cho tam giác ABC có đỉnh B(2;-7). Đường cao kẻ từ A, đường trung tuyến kẻ từ C có phương trình lầm lượt là
AH:3x+8y+11=0 và BM: x+2y+7=0. Viết phương trình đường thẳng AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm: Tìm phương trình đường thẳng đi qua 2 điểm B và C
có dạng y = ax + b (d)
Viết phương trình đường thẳng vuông góc với BC
có dạng y = a'x + b' (d') với a . a' = -1
Đường thẳng (d') này đi qua điểm A, thay tọa độ điểm A => b'
Tọa độ giao điểm của (d) và d' là tọa độ của chân đường cao hạ từ A xuống BC
a: vecto AB=(1;3)
vecto AC=(9;-3)
Vì vecto AB*vecto AC=1*9+3*(-3)=0
nên ΔABC vuông tại A
b: ABCD là hình chữ nhật
=>vecto AB=vecto DC
=>10-x=1 và -2-y=3
=>x=9 và y=-5
Tham khảo:
+) \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là dãy số chu vi của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)
Ta có:
\({{\rm{p}}_2} = {p_{\Delta {A_1}{B_1}{C_1}}} = \frac{a}{2} + \frac{a}{2} + \frac{a}{2} = \frac{1}{2} \cdot (3a) = \frac{1}{2} \cdot {p_1}\)
\(\begin{array}{l}{{\rm{p}}_3} = {p_{\Delta {A_2}{B_2}{C_2}}} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4} = {\left( {\frac{1}{2}} \right)^2} \cdot (3a) = {\left( {\frac{1}{2}} \right)^2} \cdot {p_1}\\ \ldots \\{p_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot {p_1}\\...\end{array}\)
\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {p_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{2}} \right)}^{n - 1}} \cdot (3a)} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } (3a) = 0.3a = 0.\)
+)\(\left( {{{\rm{S}}_n}} \right)\) là dãy số diện tích của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)
Gọi \(h\) là chiều cao của tam giác \({\rm{ABC}}\) và \({\rm{h}} = \frac{{a\sqrt 3 }}{2}\).
Ta có:
\(\begin{array}{l}{{\rm{S}}_3} = {S_{\Delta {A_2}{B_2}{C_2}}} = \frac{1}{2} \cdot \frac{a}{4} \cdot \frac{h}{4} = {\left( {\frac{1}{4}} \right)^2} \cdot \left( {\frac{1}{2}ah} \right) = {\left( {\frac{1}{4}} \right)^2} \cdot {S_1}\\ \ldots \\{S_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot {S_1}\\ \ldots \end{array}\)
\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {S_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{4}} \right)}^{n - 1}} \cdot {S_1}} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{2}ah} \right) = 0 \cdot \frac{1}{2}ah = 0\).
b) +) Ta có \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{p}}_1}\) = 3a và công bội \({\rm{q}} = \frac{1}{2}\) thỏa mãn \(|q| < 1\) có tổng:
\({p_1} + {p_2} + \ldots + {p_n} + \ldots = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\)
+) Ta có \(\left( {{{\rm{S}}_n}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{S}}_1} = \frac{1}{2}ah\) và công bội \(q = \frac{1}{4}\) thỏa mãn \(|q| < 1\) có tổng:
\({S_1} + {S_2} + \ldots + {S_n} + \ldots = \frac{{\frac{1}{2}ah}}{{1 - \frac{1}{4}}} = \frac{2}{3}ah = \frac{2}{3}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{3}\)
\(C\in CK\Rightarrow C\left(x;-\dfrac{3}{8}x-\dfrac{13}{8}\right)\)
\(\Rightarrow\overrightarrow{BC}=\left(x+4;-\dfrac{3}{8}x-\dfrac{53}{8}\right)\)
AH có VTPT là \(\overrightarrow{n}=\left(5;3\right)\)
Do \(AH\) vuông góc \(BC\Rightarrow\overrightarrow{BC}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}x+4=5k\\-\dfrac{3}{8}x-\dfrac{53}{8}=3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{361}{39}\\k=-\dfrac{41}{39}\end{matrix}\right.\Rightarrow C\left(-\dfrac{361}{39};\dfrac{24}{13}\right)\).
\(A\in AH\Rightarrow A\left(x;-\dfrac{5}{3}x+\dfrac{4}{3}\right)\)
\(\Rightarrow\overrightarrow{BA}=\left(x+4;-\dfrac{5}{3}x-\dfrac{11}{3}\right)\)
\(CK\) có VTPT \(\overrightarrow{n}=\left(3;8\right)\)
Do \(CK\) vuông góc \(AB\Rightarrow\overrightarrow{BA}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}x+4=3k\\-\dfrac{5}{3}x-\dfrac{11}{3}=8k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{43}{13}\\k=\dfrac{3}{13}\end{matrix}\right.\Rightarrow A\left(-\dfrac{43}{13};\dfrac{89}{13}\right)\).
A B C M N E H
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
Đáp án: B
Ta có A(-1;3), B(1;0) và C(2;-1)
Phương trình đường thẳng BC có dạng: (x - 1) + (y - 0) = 0 ⇔ x + y - 1 = 0
Độ dài đường cao của tam giác ABC kẻ từ điểm C chính bằng khoảng cách từ điểm A đến đường thẳng BC: