K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

a) Vẽ đồ thị

  

b) Gọi yA, yB, yC lần lượt là tung độ các điểm A, B, C có cùng hoành độ x = -1,5. Ta có:

yA = . (-1,5)2  = . 2,25 = 1,125

yB = (-1,5)2 = 2,25

yC = 2 (-1,5)2 = 2 . 2,25 = 4,5

c) Gọi yA, yB, yC’ lần lượt là tung độ các điểm A', B', C' có cùng hoành độ x = 1,5. Ta có:

yA, = . 1,52  = . 2,25 = 1,125

yB, = 1,52 = 2,25

yC’ = 2 . 1,52 = 2 . 2,25 = 4,5

Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.

d) Với mỗi hàm số đã cho ta đều có hệ số a > 0 nên O là điểm thấp nhất của đồ thị. Khi đó ta có x = 0.

Vậy x = 0 thì hàm số có giả trị nhỏ nhất.

a; f(0)=0

f(-1/3)=-1

b: y=-6 thì 3x=-6

hay x=-2

y=12 thì 3x=12

hay x=4

6 tháng 2 2022

OK cảm ơn nha 

a: Thay x=-1 và y=1 vào (d), ta được:

-(2m+1)=1

=>2m+1=-1

=>2m=-2

=>m=-1

b: y=(-2+1)x=-x

loading...
 

21 tháng 12 2016

f(-1)=b-a=10

f(1)=b+a=6

=>b=(10+6):2=8=>   a=6-8=-2

Vậy a=-2,b=8

Tham khảo: tìm GTLN - GTNN của hàm số : y=sinx cosx sinxcosx - Hoc24

Đặt sinx+cosx=t2t2sinx+cosx=t⇒−2≤t≤2

t2=sin2x+cos2x+2sinx.cosx=1+2sinx.cosxsinx.cosx=t212t2=sin2x+cos2x+2sinx.cosx=1+2sinx.cosx⇒sinx.cosx=t2−12

y=t+t212=12t2+t12⇒y=t+t2−12=12t2+t−12

Xét hàm f(

NV
18 tháng 8 2021

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=t\Rightarrow t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)

\(\Rightarrow y=t+\dfrac{t^2-1}{2}=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\)

Xét hàm \(y=f\left(t\right)=\dfrac{1}{2}t^2+t-\dfrac{1}{2}\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(f\left(-\sqrt{2}\right)=\dfrac{1-2\sqrt{2}}{2}\) ; \(f\left(-1\right)=-1\) ; \(f\left(\sqrt{2}\right)=\dfrac{1+2\sqrt{2}}{2}\)

\(\Rightarrow y_{min}=-1\) ; \(y_{max}=\dfrac{1+2\sqrt{2}}{2}\)

2 tháng 12 2021

bn có thể vào đây xem nhé https://lazi.vn/edu/exercise/ve-do-thi-cua-ham-so-y-2x

2 tháng 12 2021

undefined

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:
TXĐ: $D=\mathbb{R}$

Lấy $x_1\neq x_2\in D$. Xét:

$A=\frac{f(x_1)-f(x_2)}{x_1-x_2}$

\(=\frac{\frac{x_1^3}{x_1^2+1}-\frac{x_2^3}{x_2^2+1}}{x_1-x_2}=\frac{x_1^2x_2^2+x_1^2+x_1x_2+x_2^2}{(x_1^2+1)(x_2^2+1)}>0\) với mọi $x_1,x_2\in\mathbb{R}; x_1\neq x_2$

Do đó hàm số luôn đồng biến trên $\mathbb{R}$