các bạn ơi cho mình hỏi bài này với:
cho x,y,z >0; x+y+z>=1.CMR: x^3/y^2 + y^3/z^2 + z^3/x^2 >= 1
cảm ơn các bạn trước nha ! ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm
5x^2+5y^2+8xy-2x+2y+2=0
=>(4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
tổng 3 biểu thức không âm = 0 <=> chúng đều = 0
<=>2(x+y)=x-1=y+1=0
=>x=1;y=-1
Thay vào M ........
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
Ta có :
A+B+C = ( 3x - 2y2 -2y) + ( 2z - x2 -4y ) + ( 4y - 5z2 - 3x )
= -2y2 - x2 - 5z2 ( đoạn này mk làm tắt nhá )
= - 2y2 + ( -x2) + ( -5z2 )
= -( 2y2 + x2 + 5z2 ) < 0
vì x, y , z \(\ne\)0 nên \(\hept{\begin{cases}2y^2>0\\x^2>0\\5z^2>0\end{cases}}\)
=> 2y2 + x2 + 5z2 >0
=> - ( 2y2 + x2 + 5z2 ) <0
nên A+B+C <0
Tổng 3 đa thức trên <0 . Vậy trong 3 đa thức trên phải có ít nhất 1 đa thức có g.trị âm
Bạn tìm GTNN theo z thì đề đúng bằng cách:
(x+y)(1/x+1/y)>=4 suy ra 1/z=1/x+1/y>=4/x+y(do x,y>0)hay 4/4z>=4/x+y suy ra x+y>=4z.
Sau đó dùng BĐT Bunhiacopxki suy ra 2(√x+√y)^2>=(x+y)^2=16z^2 suy ra
√x+√y>=√8z=2z√2
\(\frac{12}{6}=\frac{4}{2}=\frac{8}{4}=\frac{-\left(-8\right)}{4}=\frac{24}{12}=\frac{-160}{-80}\)
Vậy x=(-8);y=12;z=-160
Theo đầu bài ta có:
12/6 = -x/4 = 24/y = z/-80 (1)
Mà ta thấy: 12/6 = 8/4 = 24/12 = -160/-80 (2)
Thế (2) vào (1), suy ra:
-x = 8 => x = -8
y = 12
z = -160