K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

G/s: MO = OA 

Dễ dàng chứng minh AO là đường trung trực MN và BC 

=> Tam giác AOM cân tại O và B là giao điểm hai đường cao => B là trực tâm 

=> AB vuông OM 

Dễ dàng chứng minh AB = BM  mà BM = BC 

=> AB = BC => tam giác ABC đều => Vô lí với giả thiết 

Em kiểm tra lại đề nhé!

14 tháng 4 2020

Nguyễn Linh Chi

a chết sr cô ạ con thiếu đề : \(\widehat{BAC}\)

10 tháng 2 2022

undefined

10 tháng 2 2022

Vì tam giác ABC cân tại A

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\text{^}B_1=\text{^}C_1\end{matrix}\right.\)

Xét tam giác ABM và tam giác ACN có:

\(AB=AC\)(gt)

\(\text{^}B_2=\text{^}C_2\left(Vì\text{^}B_1=\text{^}C_1\right)\)

\(BM=CM\left(gt\right)\)

⇒ Tam giác ABM= tam giác ACN (c.g.c)

⇒ \(AM=AN\) (t/ứ)

⇒ Tam giác AMN cân tại A (đpcm)

a: Ta có: ΔABC cân tại A

nên AB=AC

b: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

c: Ta có: ΔABM=ΔACN

nên AM=AN

hay ΔAMN cân tại A

2 tháng 3 2022

Giúp mik vs mn, đang cầm gấp ạ

 

4 tháng 3 2021
answer-reply-imageBn tham khảo nhé!  
4 tháng 3 2021

Mn giúp mik với;-;

16 tháng 2 2017

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

ΔABC cân tại A suy ra Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Ta lại có :

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- ΔABM và ΔACN có

      AB = AC (Do ΔABC cân tại A).

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

      BM = CN(gt)

⇒ ΔABM = ΔACN (c.g.c)

⇒ AM = AN (hai cạnh tương ứng) ⇒ ΔAMN cân tại A.

Xét ΔBAM và ΔCAN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO dó: ΔBAM=ΔCAN

Suy ra: AM=AN

hay ΔAMN cân tại A

27 tháng 2 2015

Từ đỉnh A kẻ đường cao AH (H thuộc BC) (1)

Ta có : tam giác ABC cân tại A (gt) (2)

Từ(1) và(2)=> HB=HC(=1/2 BC) (3)

Lại có: BM=CN (gt) (4)

M nằm trên tia đối của tia BC, N nằm trên tia đối của tia CB => M,B,C.N thẳng hàng (5)

Từ (3)và (4)=>HB+BM=HC+CN (6)

Từ  (5) và (6)=>AH vừa là đường cao, vừa là đường trung tuyến trong tam giác AMN

=> Tam giác AMN cân tại A (đpcm)

 

10 tháng 1 2017

làm kiểu j vậy

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

=>ΔADE cân tại A

b: ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A có AM là đường cao

nên AM là phân giác của góc DAE

5 tháng 7 2023

a

Theo đề có \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)

Lại có: \(\widehat{ABD}+\widehat{ABC}=\widehat{ACE}+\widehat{ACB}\left(=180^o\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và tam giác ACE có:

`AB=AC`

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

`DB=CE`

=> ΔABD = ΔACE

=> `AD=AE` (2 cạnh tương ứng)

=> Tam giác ADE cân tại A

b

Ta có:

`BM=CM`

`DB=CE`

\(\Rightarrow\)`DM=EM`

\(\Rightarrow\)AM là đường trung tuyến của ΔADE

\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)