cho m và n là số tự nhiên khác o ; p là số nguyên tố thỏa mãn \(\dfrac{p}{m-1}\)=\(\dfrac{m+n}{p}\).chứng minh rằng \(p^2\)=n+2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VT
17 tháng 9 2023
Mình xin giải thích bài này như sau:
a) Tìm 4 số tự nhiên thuộc tập L với điều kiện là 2 * K + 1 vậy các bạn cứ lấy bất kỳ một số tự nhiên thay vào vị trí K sẽ luôn được 1 số lẻ.
VD: thay k=0 thì: 2 * 0 + 1 = 1 hoặc k = 1 thì: 2 * 1 + 1 = 3
b: L là tập hợp các số tự nhiên lẻ.
12 tháng 9 2023
Bạn không được đăng nhiều câu hỏi trùng lặp như thế, cho dù cần lời giải gấp thì mấy bạn sẵn sàng trả lời, chứ hỏi liên tiếp vậy gây loãng trang hỏi đáp. Mình muốn giải câu hỏi cũng chẳng biết giải vào câu nào vì đăng một lúc quá nhiều.
a) \(3\in M;5\in M;1\in M;7\in M\)
\(4\notin M;6\notin M\)
b) \(M=\left\{n\inℕ|n=2\left(k+0,5\right)\right\}\)
\(\dfrac{p}{m-1}=\dfrac{m+n}{p}\)
\(\Rightarrow p^2=\left(m-1\right).\left(m+n\right)\)
\(\Rightarrow p^2⋮m-1\)
\(\Rightarrow p⋮m-1\Leftrightarrow\left\{{}\begin{matrix}m-1=1\\m-1=p\end{matrix}\right.\)
Nếu \(m-1=p\Rightarrow m+n=p\)
\(\Rightarrow m-1=m+n\)
\(\Rightarrow n=-1\) ( loại )
Nếu \(m-1=1\Rightarrow m=2\left(TM\right)\)
Khi đó: \(p^2=\left(2-1\right).\left(2+n\right)\)
\(\Rightarrow p^2=2+n\)