K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Đáp án: B

3 x - 2 ≥ 4 ⇔ 3 x - 2 ≤ - 4   h o ặ c   3 x - 2 ≥ 4 ⇔ x ≤ - 2 3   h o ặ c   x ≥ 2 ⇔ A = ( - ∞ ; - 2 3 ] ∪ [ 2 ; + ∞ ) .

A ∩ B = ∅ ⇒ các phần tử thuộc B thì không thuộc A nên B ⊂ ( - 2 3 ; 2 )

⇒ m ≥ - 2 3 m + 2 < 2 ⇔ m ≥ - 2 3 m < 0 ⇒ m ∈ [ - 2 3 ; 0 ) .

Câu 2: 

\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)

Tập này có 3 phần tử nguyên

https://meet.google.com/bfu-vyru-hhnhttps://meet.google.com/bfu-vyru-hhnBài 1. Xác định tập hợp A ∩ B, A ∪ B, A \ B, CRAvới:Bài 2. Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.Bài 3. Tìm TXĐ hs sau:                     Bài 4. Lập BBT và vẽ đồ thị hs sau:a. y = x2 - 4x + 3b. y = -x2 +2x - 3c. y = x2 + 2x d. y = -2x2 -2Bài 5. Tìm Parabol y = ax2 - 4x + c, biết rằng...
Đọc tiếp

https://meet.google.com/bfu-vyru-hhn

https://meet.google.com/bfu-vyru-hhn

Bài 1. Xác định tập hợp A ∩ B, A ∪ B, A \ B, CRAvới:

bai-tap-toan-10

Bài 2. Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.

Bài 3. Tìm TXĐ hs sau:

bai-tap-toan-10                     

Bài 4. Lập BBT và vẽ đồ thị hs sau:

a. y = x2 - 4x + 3

b. y = -x2 +2x - 3

c. y = x2 + 2x 

d. y = -2x2 -2

Bài 5. Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol : 

Đi qua hai điểm A(1; -2) và B(2; 3).          

Có đỉnh I(-2; -2).

Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).

Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).

Bài 6. Giải các phương trình sau:

bai-tap-toan-10

bai-tap-toan-10

Bài 7. Biết X1, X2 là nghiệm của phương trình 5x2 - 7x + 1 = 0. Hãy lập phương trình bậc hai có các nghiệm bai-tap-toan-10

Bài 8.

bai-tap-toan-10

17
25 tháng 10 2021

-.-???? Lớp 1 ???

25 tháng 10 2021

lớp 1 mà có cả √ luôn. thật là tuổi trẻ tài cao hiha

19 tháng 8 2017

\(A\cap B=\left\{1\right\}\)

\(A\cup B=\left\{-2;-1;0;1;2\right\}\)

25 tháng 8 2023

Để xác định xem tập hợp A có phải là tập con của tập hợp B hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp A có thuộc tập hợp B hay không. Tương tự, để xác định xem tập hợp B có phải là tập con của tập hợp A hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp B có thuộc tập hợp A hay không.

Tập hợp A được xác định bởi điều kiện (x-1)(x-2)(x-4)=0. Điều này có nghĩa là các giá trị của x mà khi thay vào biểu thức (x-1)(x-2)(x-4) thì biểu thức này sẽ bằng 0. Các giá trị này là 1, 2 và 4. Do đó, tập hợp A là {1, 2, 4}.

Tập hợp B được xác định bởi các ước của số 4. Số 4 có các ước là 1, 2 và 4. Do đó, tập hợp B cũng là {1, 2, 4}.

Vì tập hợp A và tập hợp B đều chứa các phần tử 1, 2 và 4, nên ta có thể kết luận rằng tập hợp A là tập con của tập hợp B và tập hợp B là tập con của tập hợp A.

Vậy, tập hợp A và tập hợp B là bằng nhau.

NV
30 tháng 12 2020

\(A=[4;+\infty)\)

\(B=\left(6;9\right)\)

\(B\backslash A=\varnothing\)

a: A=[1;+∞)

B=(-∞;3]

b: A giao B=[1;3]

A hợp B=R

A\B=(3;+∞)

B\A=(-∞;1)

11 tháng 9 2023

\(mx^2-4x+m-3=0\left(1\right)\)

Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)

\(\Leftrightarrow3< m< 4\)

14 tháng 12 2023

Ta có:

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\) 

+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)

          \(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)

          \(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

Mặt khác:

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

Để A, G, I thẳng hàng 

=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)