K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3

Từ △ABC đều \(\Rightarrow AB=BC=CA;\hat{A}=\hat{B}=\hat{C}=60^{O}\)

Mà hai đường trung tuyến BM, CN cắt nhau tại G nên ta có: G là trọng tâm △ABC nên ta có: AG là trung tuyến BC

Mà NC là trung tuyến AB

Do đó: \(AN=NB=BH=HC=\frac{AB}{2}=\frac{BC}{2}\)

Xét △AMB và △BMC có:

AB = BC

AM = HC (cmt)

BM chung

=> △AMB = △BMC (ccc)

=> BM là tia phân giác góc B

Xét △GBN và △GBH có:

BG chung

\(\hat{NBG}=\hat{GBH}\) (BM là tia phân giác góc B)

BN = BH (cmt)

=> △GBN = △GBH (cgc)

1 lần nữa cảm ơn bạn nhé! <3

6 tháng 9 2020

\(\widehat{ACD}=\widehat{BCD}-\widehat{BCA}=73-\left(90-\widehat{CBA}\right)=45\)=> Tam giác ACD vuông cân tại A=> AC=AD

Vẽ \(AH\perp DC\Rightarrow\hept{\begin{cases}AH//BE\\AH=DH=ACcos45=15\frac{\sqrt{2}}{2}sin62\end{cases}}\)

Xét \(AH//BE\Rightarrow\frac{EH}{DH}=\frac{AB}{AD}\Rightarrow\frac{EH}{AH}=\frac{AB}{AC}=cot62\Rightarrow EH=AHcot62=15\frac{\sqrt{2}}{2}sin62.cot62\)

                                                                                                                                              \(=15\frac{\sqrt{2}}{2}cos62\) 

Xét tam giác AHE vuông tại H \(\Rightarrow AE^2=AH^2+HE^2=\left(15\frac{\sqrt{2}}{2}\right)^2\left(sin^262+cos^262\right)=\left(15\frac{\sqrt{2}}{2}\right)^2\)

\(\Rightarrow AE=15\frac{\sqrt{2}}{2}cm\)

10 tháng 6 2023

loading...

Gọi độ dài đoạn BH là: \(x\) ( cm) ; \(x\) > 0; AC > AB nên  \(x\) < CH

Xét tam giác vuông HAB vuông tại H theo pytago ta có:

AB2 = HA2 + HB2 = 9,62 + \(x^2\) = 92,16 + \(x^2\)

Xét tam giác vuông AHC vuông tại H theo pytago ta có:

AC2 = HA2 + HC2 = 9,62 + (\(20-x\))2 = 92,16 + 400 - 40\(x\) + \(x^2\) 

AC2 = 492,16 - 40\(x\) + \(x^2\)

Xét tam giác vuông ABC vuông tại A theo pytago ta có:

AC2 + AB2 = BC2

492,16  - 40\(x\) + \(x^2\) + 92,16 + \(x^2\) = 202

(\(x^2\) + \(x^2\)) - 40\(x\) + (492,16 + 92,16) - 400 = 0

2\(x^2\) - 40\(x\) + 584,32 - 400 = 0

2\(x^2\)- 40\(x\) + 184,32 =0

\(x^2\) - 20\(x\) + 92,16 = 0

△' = 102 - 92,16 = 7,84 > 0

\(x\)1 =  -(-10) + \(\sqrt{7,84}\) =  12,8 ⇒ CH = 20 - 12,8 = 7,2 < BH  (loại )

\(x_2\) = -(-10) - \(\sqrt{7,84}\) = 7,2 ⇒ CH = 20 - 7,2 = 12,8 (thỏa mãn)

Thay \(x_2\) = 7,2 vào biểu thức: AB2 = 92,16 + \(x^2\) = 92,16 + 7,22 = 144 

⇒AB = \(\sqrt{144}\) = 12 

Thay \(x_2\) = 7,2 vào biểu thức: AC2 = 492,16 - 40\(x\) + \(x^2\) 

AC2 = 492,16 - 40\(\times\) 7,2 + 7,22 = 256

AC = \(\sqrt{256}\) = 16

Kết luận AB = 12 cm; AC = 16 cm 

 

21 tháng 1 2017
Câu a làm sao vậy banđ
23 tháng 1 2017

giải câu a ra đi cậu 

6 tháng 4 2017

Hình khỏi vẽ đi ha.

c/ Xét tam giác ABH và tam giác ACH có:

     góc BHA = góc CHA = 90 độ (gt)

    góc ABH = góc HAC (vì tam giác AHC đồng dạng tam giác BAC)

=> tam giác ABH đồng dạng tam giác ACH (g.g)

=> HA/HC = HB/HA

=> HA.HA = HB.HC

=> HA^2 = HB.HC