Cho ∆ABC, Â =90° ; goc B =60°; BM la phan giac cua goc ABC. Ke MH vuon goc BC tai H
a) Cm: ∆ABM=∆HBM
b) MH la duong trung truc BC
c) Ke CK vuong goc BM tai K. Cm CA la phan giac cua goc BCK
d) Cm AK // BC
e) BA cat CK tai D. Cm : D,M,H thang hang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5\)cm
cạnh ab là: (9=7):2= 8 cm
cạnh ac là: 9-8= 1 cm
â= 90? /mk ko hỉu/
k mk nhé
Ta có:\(\Delta ABC,\widehat{A}=90^o\Rightarrow\Delta ABC\) vuông tại A.
Theo bài ra ta có:
\(AB+AC=9cm\) (1)
\(AB-AC=7cm\) (2)
Xét tổng (1) và (2):
\(AB+AC+AB-AC=9cm+7cm\)
\(2.AB=16cm\)
\(AB=16cm:2\)
\(AB=8cm\)
Thay AB=8cm vào (1),ta được:
AB+AC=9cm
\(\Leftrightarrow8cm+AC=9cm\)
\(\Leftrightarrow AC=1cm\)
Ta có định lý Py-ta-go về tam giác cân:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+1^2\)
\(\Leftrightarrow BC^2=65\)
\(\Leftrightarrow BC=\sqrt{65}\)
\(BC\approx8cm\)
Vậy BC\(\approx\)8 cm.
Hình như đề bài có gì đó sai sai nên theo mình thì chỉ ước lượng BC=8cm.Chứ thật ra thì BC là số thập phân vô hạn tuần hoàn cơ.
Do AB=AC(gt)
=> Tg ABC cân tại A
Mà \(\widehat{A}=90^o\)
=> Tg ABC vuông cân tại A
#H
a: tan B=3/4
=>AC/AB=3/4
=>AC=3cm
BC=căn 3^2+4^2=5cm
sin B=AC/BC=3/5
=>góc B=37 độ
=>góc C=53 độ
b: cos B=2/5
=>sin B=căn 21/5
=>AC/BC=căn 21/5
=>BC=50/căn 21(cm)
=>AB=20/căn 21(cm)
cos B=2/5
=>góc B=67 độ
=>góc C=23 độ
c: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>100-BC^2=6*8=48
=>BC=2*căn 13cm
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
=>2*căn 13/sin60=6/sinC=8/sinB
=>góc C=46 độ; góc B=180-60-46=74 độ
\(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\\ \Leftrightarrow S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot4\cdot3=6\left(cm^2\right)\)
BA/AC=3/4
nên HB/HC=(3/4)^2=9/16
=>HB/9=HC/16=(HB+HC)/(9+16)=15/25=0,6
=>HB=5,4cm; HC=9,6cm