Tọa độ giao điểm của hai đường thẳng d 1 : x = 2 t y = - 1 + t ; d2: x + 2y - 2 = 0 là:
A. (0;-1)
B. (2;0)
C. (-1;0)
D. (0;2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ giao điểm là:
x-2=-x+2 và y=x-2
=>x=2 và y=0
Vì 1*(-1)=-1
nên (d) vuông góc với (d')
Phương trình hoành độ giao điểm
x2 = -x + 2
<=> x2 + x - 2 = 0
Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm \(x_1=1;x_2=-2\)
Với x1 = 1 => y1 = 1 => A(1,1)
Với x2 = -2 => y2 = 4 => B(-2 , 4)
Ta có BO = \(\sqrt{\left(-2\right)^2+4^2}=\sqrt{20}\);
\(OA=\sqrt{1^2+1^2}=\sqrt{2}\)
AB = \(\sqrt{3^2+3^2}=\sqrt{18}\)
Từ đó dễ thấy OA2 + AB2 = BO2
=> Tam giác AOB vuông tại A
nên SAOB = \(\dfrac{\sqrt{18}.\sqrt{2}}{2}=3\)
x2 = -x + 2
<=> x2 + x - 2 = 0
Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm
Với x1 = 1 => y1 = 1 => A(1,1)
Với x2 = -2 => y2 = 4 => B(-2 , 4)
Ta có BO = ;
AB =
Từ đó dễ thấy OA2 + AB2 = BO2
=> Tam giác AOB vuông tại A
nên SAOB =
Đáp án: C
Gọi M là giao điểm của d và d’
Vì M ∈ d' ⇒ M(2t; 3-t)
Vì M ∈ d ⇒ 2t - 3.(3 - t) - 1 = 0 ⇔ 2t - 9 + 3t - 1 = 0 ⇔ t = 2 ⇒ M(4;1)
Giao điểm của (d) và (C) thỏa mãn:
\(\left(2+t\right)^2+\left(-1+3t\right)^2-2\left(2+t\right)-1=0\)
\(\Leftrightarrow10t^2-4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{2}{5}\end{matrix}\right.\)
Vậy (d) và (C) cắt nhau tại 2 điểm có tọa độ là: \(\left[{}\begin{matrix}\left(2;-1\right)\\\left(\dfrac{12}{5};\dfrac{1}{5}\right)\end{matrix}\right.\)
Chọn B
Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).
Lời giải:
1. PT hoành độ giao điểm:
$x^2-(2x-m^2+9)=0\Leftrightarrow x^2-2x+m^2-9=0(*)$
Khi $m=1$ thì pt trên trở thành: $x^2-2x-8=0$
$\Leftrightarrow (x-4)(x+2)=0\Rightarrow x=4$ hoặc $x=-2$
Khi $x=4\Rightarrow y=x^2=16$. Giao điểm thứ nhất là $(4,16)$
Khi $x=-2\Rightarrow y=x^2=4$. Giao điểm thứ hai là $(-2,4)$
2. $(P)$ và $(d)$ cắt nhau tại 2 điểm phân biệt $\Leftrightarrow (*)$ có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)
$\Leftrightarrow \Delta'=1-(m^2-9)>0\Leftrightarrow 10>m^2(1)$
Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm $x_1,x_2$ trái dấu. Điều này xảy ra khi $x_1x_2< 0\Leftrightarrow m^2-9< 0(2)$
Từ $(1);(2)$ suy ra $m^2-9< 0\Leftrightarrow -3< m< 3$
Đáp án: B
Giả sử M là giao điểm của hai đường thẳng.