cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ABM có DE//AM => \(\dfrac{AE}{AB}=\dfrac{DM}{BM}\)
Mà M là trung điểm của BC => BM=CM
=> \(\dfrac{AE}{AB}=\dfrac{DM}{CM}\)(1)
Xét ∆FDC có AM//FD => \(\dfrac{DM}{MC}=\dfrac{FA}{AC}\)(2)
Từ (1) và (2) => \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\) <=> AE.AC=AF.AB
b) Ta có: \(\dfrac{DF}{AM}=\dfrac{DC}{CM}\)
Mà \(\dfrac{DE}{AM}=\dfrac{BD}{BM}=\dfrac{BD}{CM}\)
=> \(\dfrac{DE+DF}{AM}=\dfrac{BD+DC}{MC}=\dfrac{BC}{MC}=2\)
=> \(DE+DF=2AM\)
Bài này có nhiều cách làm, vẽ thêm đường phụ cũng được, dùng định lý Menelaus cũng được nhưng lớp 10 thì nên dùng vecto
Ta có:
\(k=\dfrac{AG}{AB}=1-\dfrac{BG}{AB}=1-\dfrac{DE}{AB}=1-\dfrac{2DE}{3EF}\)
Đặt \(\dfrac{AD}{AM}=m\)
\(\Rightarrow\overrightarrow{ED}=m\overrightarrow{EM}+\left(1-m\right)\overrightarrow{EA}\)
\(=m\left(\overrightarrow{EC}+\overrightarrow{CM}\right)+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)
\(=\dfrac{2}{3}m\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)
\(=\left(m-\dfrac{1}{3}\right)\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}\)
Lại có: \(\overrightarrow{EF}=\dfrac{2}{3}\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{CB}\)
Mà \(D,E,F\) thẳng hàng nên:
\(\left(m-\dfrac{1}{3}\right)\dfrac{2}{3}=\dfrac{1}{2}m.\dfrac{2}{3}\Leftrightarrow m=\dfrac{2}{3}\)
\(\Rightarrow\overrightarrow{ED}=\dfrac{1}{2}\overrightarrow{EF}\Rightarrow ED=\dfrac{1}{2}EF\)\(\Leftrightarrow\dfrac{DE}{EF}=\dfrac{1}{2}\)
\(\Rightarrow k=\dfrac{2}{3}\)
Câu hỏi của duy phạm - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
đọc mà rối loạn tâm chí, chi co cao thủ như các thầy cô giáo mới làm đc