tìm "m" biết g(x)=m2^x+2mx-3=0 ; cho x=2 lsfm nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
Chọn D
Đặt t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:
t2+ 2(1-m) t+ m2- 3 m+2= 0 (2)
Để pt (1) có nghiệm x≤ 1 khi và chỉ khi pt (2) có nghiệm t≤ 0
TH1: Pt(2) có nghiệm : t1≤ 0 ≤ t2
Khi đó; P= t1.t2 ≤0 hay m2- 3m+ 2≤ 0 hay 1≤ m ≤ 2
TH2: pt (2) có nghiệm
Kết luận: với 1≤ m≤ 2 thì pt (1) có nghiệm x≤1
PT có 2 nghiệm phân biệt `<=> \Delta'>0`
`<=>m^2-(m^2+m-5)>0`
`<=>-m+5>0`
`<=> m < 5`
Viet: `x_1+x_2=2m`
`x_1x_2=m^2+m-5`
Theo đề bài: `2(x_1^2+x_2^2)-3x_1x_2=29`
`<=>2[(x_1+x_2)^2-2x_1x_2]-3x_1x_2=29`
`<=>2(x_1+x_2)^2-7x_1x_2=29`
`<=>2.4m^2 - 7(m^2+m-5)=29`
`<=>` \(\left[{}\begin{matrix}m=6\left(L\right)\\m=1\left(TM\right)\end{matrix}\right.\)
Vậy `m=1`.
Chọn D
Đặt t= x-1 hay x= t+1, thay vào pt đã cho ta được pt:
t2+ 2(1-m) t+ m2- 3 m+2= 0 (2)
Để pt (1) có nghiệm x ≥ 1 khi và chi khi pt (2) có nghiệm t ≥ 0
+ TH1: Pt (2) có nghiệm t1 ≤ 0 ≤ t2
Khi đó; P= t1.t2 ≤ 0 hay m2- 3m+ 2 ≤ 0
Từ đó; 1≤ m≤ 2
+ TH2: Pt (2) có nghiệm :
Kết luận: với thì pt (1) có nghiệm x ≥ 1
Bài 1:
Gọi biểu thức trên là $P$
\(P=\frac{\sqrt{x}(\sqrt{x}-3)+3(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-3)}.\frac{x-9}{\sqrt{x}-3}\)
\(=\frac{x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{\sqrt{x}-3}=\frac{x+9}{\sqrt{x}-3}\)
Bài 2:
Để $(d)$ và $(d')$ song song với nhau thì:
$m^2-3=2m$
$\Leftrightarrow m^2-2m-3=0$
$\Leftrightarrow (m+1)(m-3)=0$
$\Leftrightarrow m+1=0$ hoặc $m-3=0$
$\Leftrightarrow m=-1$ hoặc $m=3$
a: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m+6\right)\)
\(=4m^2-4m-24\)
\(=4\left(m^2-m-6\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m^2-m-6>0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
b: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(m+3\right)\)
\(=4m^2-4m^2-12m\)
=-12m
Để phương trình vô nghiệm thì Δ<0
hay m>0
c: Ta có: \(\text{Δ}=\left(2m-3\right)^2-4\left(m-2\right)\left(m+1\right)\)
\(=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=4m^2-12m+9-4m^2+4m+8\)
\(=-8m+17\)
Để phương trình có nghiệm kép thì Δ=0
hay \(m=\dfrac{17}{8}\)
Ta có:
\(g\left(x\right)=mx^2+2mx-3=0\)
Vì \(x=2\) là nghiệm của \(g\left(x\right)\) (gt).
+ Thay \(x=2\) vào \(g\left(x\right)\) ta được:
\(g\left(x\right)=m.2^2+2m.2-3=0\)
\(\Rightarrow m.4+4m-3=0\)
\(\Rightarrow4m+4m-3=0\)
\(\Rightarrow8m-3=0\)
\(\Rightarrow8m=0+3\)
\(\Rightarrow8m=3\)
\(\Rightarrow m=3:8\)
\(\Rightarrow m=\frac{3}{8}.\)
Vậy \(m=\frac{3}{8}.\)
\(g\left(x\right)=mx^2+2mx-3=0\)
Thay x = 2 vào biểu thức ta có : \(m.2^2+2m.2-3=0\Leftrightarrow4m+4m-3=0\Leftrightarrow8m-3=0\)
\(\Leftrightarrow8m=3\Leftrightarrow m=\frac{3}{8}\)