cho 3 số a; b; c thỏa mãn :
0 < a < b + 1 < c + 2 và a + b + c = 1
tìm giá trị nhỏ nhất của c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài
\(A+1⋮2;3;4;5;6\Rightarrow A+1=BC\left(2;3;4;5;6\right)\left(A< 1000\right)\)
\(BCNN\left(2;3;4;5;6\right)=60\)
A lớn nhất khi A+1 lơn nhất thỏa mãn \(A+1< 1001\)
\(A+1=60.k\) với k là số nguyên dương lớn nhất thỏa mãn
\(A+1=60k< 1001\Rightarrow k\le16\Rightarrow k=16\)
\(\Rightarrow A+1=60.16=960\Rightarrow A=959\)
Tổng các chữ số của A là
9+5+9=23
Bài 1:
Gọi số phải tìm là a ( a ϵ N*)
Ta có: a+42 chia hết cho 130 và 150
=> a + 42 ϵ BC(130;135)
=> a= 1908; 3858; 5808; 7758; 9708
a) Ta có:
a = 3k + r
b = 3h + r
(Chú ý k > h vì a > b)
a - b = 3k + r - 3h - r
= 3(k - h)
\(\Rightarrow\)
b) Đề sai. Vì nếu a : 3 dư 2 và b chia hết cho 3 thì tổng a + b sẽ không chia hết cho 3
a: A chia hết cho 9
=>4+a+5+1+2 chia hết cho 9
=>a=6
c: =>1-(x+7/18):3/4=0
=>(x+7/18):3/4=1
=>x+7/18=3/4
=>x=13/36
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1
\(0\le a\le b+1\le c+2\\\)
\(\Rightarrow0\le a+b+1+c+2\le\left(c+2\right)+\left(c+2\right)+\left(c+2\right)=3c+6\)
\(\Rightarrow\left(a+b+c\right)+1+2\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(c\ge\frac{-2}{3}\)
Vậy GTNN của c là \(\frac{-2}{3}\)\(\Leftrightarrow\)a+b=\(\frac{5}{3}\)