K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

de dungh nhan cheo ay

15 tháng 11 2016

Ta có :

a / b = c / d

Vậy có 2 trường hợp :

- a = c ; b = d

- a x y / b x y = c / d

a ) a + b / b = c + d / d

Vậy trường hợp này đúng với cả 2 trường hợp 

b ) cũng thỏa mãn

c ) cũng thỏa mãn cả hai trường hợp

22 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

27 tháng 12 2016

Ta có : a/b=c/d<=>a/c=b/d=a+b/c+d=a-b/c-d

=>a+b/a-b=c+d=c-d

27 tháng 12 2016

Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)

Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\) 

\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)

Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)

8 tháng 11 2015

câu hỏi tương tự nha bn 

tick mk nha

11 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)

Vậy.......

Ta có :a/b = c/d suy ra a/c = b/d

Áp dụng tích chất dãy tính chất tỉ số bằng nhau

a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d

21 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

20 tháng 9 2018

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

20 tháng 9 2018

ta có: a/b = c/d

=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)

=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)

#

11 tháng 6 2016

a) Gọi giá trị chung của các tỉ số là k, ta có :

\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\)\(a=k\times b\) ; \(c=k\times d\)

Ta có :

\(\frac{a+b}{a}=\frac{k\times b+b}{k\times b}=\frac{b\times\left(k+1\right)}{k\times b}=\frac{k+1}{k}\)       ( a, k.b, k\(\ne\)0 )                                             (1)

\(\frac{c+d}{c}=\frac{k\times d+d}{k\times d}=\frac{d\times\left(k+1\right)}{k\times d}=\frac{k+1}{k}\)       ( c, k.d, k \(\ne\)0 )                                             (2)

Từ (1) và (2)\(\Rightarrow\) \(\frac{a+b}{a}=\frac{c+d}{c}\)