K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a;b;c\ne0;c=2020\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\). Từ đó ta có

\(a=b=c\). Mà \(c=2020\Leftrightarrow a=b=2020\)

Vậy \(a=b=2020\)

14 tháng 8 2016

Bài 2: Mình nghĩ câu a là a+2b-3c=-20

a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5

a/2 = 5 => a = 2 . 5 = 10

b/3 = 5 => b = 5 . 3 = 15

c/4 = 5 => c = 5 . 4 = 20

Vậy a = 10; b = 15; c = 20

b) Ta có: a/2 = b/3 => a/10 = b/15

              b/5 = c/4 => b/15 = c/12

=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7

a/10 = -7 => a = -7 . 10 = -70

b/15 = -7 => b = -7 . 15 = -105

c/12 = -7 => c = -7 . 12 = -84

Vậy a = -70; b = -105; c = -84.

14 tháng 8 2016

bài 1

a:b:c:d=2:3:4:5=

26 tháng 2 2019

đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0

Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0

Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng

26 tháng 2 2019

khoannnnnnnn, bn: Lê Hồ Trọng Tín ơi:

nếu a=1,b=2,c=1,d=1 thì: \(\frac{1}{2+1+1}=\frac{1}{4}-\frac{1}{3}\ge0???\)

mọe, t-i-k đúng nhầm :(((

7 tháng 7 2017

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..........+\frac{1}{49.50}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

cái kia tự tìm

16 tháng 5 2016

1) \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(D=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+.....+\frac{5}{700}\)

\(D=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+......+\frac{5}{25.28}\)

\(D=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{25.28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{25}-\frac{1}{28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}.\frac{6}{28}=\frac{5}{14}\)

\(E=\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+....+24}\)

Ta có: \(1+2=\)\(\frac{2.\left(2+1\right)}{2}=3\);\(1+2+3=\frac{3.\left(3+1\right)}{2}=6\);\(1+2+3+...+24=\frac{24.\left(24+1\right)}{2}=300\)

\(E=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{300}\)

=>\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{600}=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{24.25}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{24}-\frac{1}{25}=\frac{1}{2}-\frac{1}{25}=\frac{23}{50}\)

=>\(E=\frac{46}{50}\)

Vậy \(\frac{D}{E}=\frac{5}{14}:\frac{46}{50}=\frac{250}{644}=\frac{125}{322}\)

16 tháng 5 2016

2) Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-\left(a-b\right)}{a+c-\left(a-c\right)}=\frac{a+b-a+b}{a+c-a+c}=\frac{2b}{2c}=1\)

=>b=c

do đó \(A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{\left(10+9+1\right).b^2}{\left(2+1+2\right).b^2}=4\)

7 tháng 9 2015

Với a,b >0.Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\left(đpcm\right)\) 

Dấu = xảy ra khi và chỉ khi a=b

6 tháng 7 2021

chọn C 

18 tháng 2 2020

Giúp mình với

12 tháng 4 2020

Chứng minh gì vậy bạn