1/ Rút gọn các biểu thức sau :
a) ( x + y )2 - ( x - y )2 ; b) ( a + b )3 + ( a - b)3 - 2a3 ; c) 98 .28 - ( 184 - 1 )( 184 + 1 )
2/ Chứng minh biểu thức sau không phụ thuộc vào biến x,y :
a) A = ( 3x - 5 )( 2x + 11 ) - ( 2x + 3 )( 3x + 7 ) ; b) B = ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )
3/ Phân tích các đa thức sau thành nhân tử :
a) x2( x - 1 ) + 16( 1 - x ) b) x2 - x - 12 c)x2 + 8x + 15 d) x2y - x3 - 9y + 9x
e) x2 - y2 - 2x + 2y f) x2 - 25 + y2 + 2xy g) x2 - 2x - 4y2 - 4y
4/ Tìm x biết:
a) 2x( x - 5 ) - x( 3 + 2x ) = 26 b) 2( x + 5 ) - x2 - 5x = 0 c) ( 2x - 3 )2 - ( x + 5 )2 = 0
d) x3 + x2 -4x = 4 g) ( x - 1 )( 2x + 3 ) - x( x -1 ) = 0 h) x2 - 4x + 8 = 2x - 1
4.a) \(2x^2-10x-3x-2x^2-26=0\)
\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)
\(\Rightarrow x=-2\)
b) \(2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)
\(-\left(x^2+3x-10\right)=0\)
\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)
\(-\left(x-2\right)\left(x+5\right)=0\)
\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(x^3+x^2-4x-4=0\)
\(x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
g) \(\left(x-1\right)\left(2x+3-x\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)
\(\left(x-3\right)^2=0\Rightarrow x=3\)