cho 2> a, b, c và a, b, c không âm; biết a+ b+ c= 3
CMR: a2+ b2+ c2 nhỏ hơn hơn hoặc bằng 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1+1+1}{a^2+b^2+c^2}=\frac{3}{a^2+b^2+c^2}=\frac{a+b+c}{a^2+b^2+c^2}\)
Đề sai rùi bạn.
Phải là \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le a^2+b^2+c^2\)
Lần sau nhớ viết đề kĩ hơn nha:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) và a, b, c > 0
Giả sử \(a\ge b\ge c>0\Rightarrow a+b\ge a+c\ge b+c\)
\(\text{Do đó: }a\ge b\ge c\text{ và }\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng BĐT Chebyshev cho hai dãy đơn điệu cùng chiều ta thu được:
\(3\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Nhân 2 vào hai vế tách ra rồi dùng AM - GM tiếp tục vào vế phải rồi từ đó suy ra đpcm:)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ac+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\) ( 1 )
Có BĐT phụ:\(\left(a+b+c\right)^2\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)
Áp dụng vào ( 1 ) ta có:
\(A\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra tại \(a=b=c>0\)
P/S:Có tới 45 cách CM bài toán này,bạn lên google có đầy.
khai triển và rút gọn ta được:
\(4a^3+4b^3+4c^3+24abc\ge\left(a+b+c\right)^3.\)<=> \(a^3+b^3+c^3+8abc\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)<=> a(a-b)(a-c) + b(b-a)(b-c) +c(c-a)(c-b) +3abc\(\ge0\)
giả sử \(a\ge b\ge c\)
c(c-a)(c-b)\(\ge0\)
a(a-b)(a-c) + b(b-a)(b-c) = (a-b)(a2 - b2 + bc-ac) = (a-b)2(a+b-c) \(\ge0\)
3abc\(\ge0\)
cộng vế theo vế ta được bdt cần chứng minh
dâu '=' khi \(\hept{\begin{cases}c\left(c-a\right)\left(c-b\right)=0\\\left(a-b\right)^2\left(a+b-c\right)=0\\3abc=0\end{cases}}\)=> a=b; c=0
Đặt
x=a+b , y=b+c , z=c+a
=> x+y+z=2
Ta cần chứng minh x+z > 4xyz
Ta có
4(x+z)=(x+y+z)2
(x+z) > 4y.4xz=16xyz
= 4y(x+z)2 > 4y.4xz= 16xyz
=>x+z > 4xyz
Hoàn tất chứng minh . Dấu "=" xảy ra khi x=z=1/2:y=1 thế vào tìm a,b,c.
Chúc bn hok tốt
Áp dụng BĐT cô-si, ta có
\(\left(a+b+c\right)^2\ge4a\left(b+c\right);\left(b+c\right)^2\ge4bc\)
Nhân từng vế, ta có \(\left(a+b+c\right)^2\left(b+c\right)^2\ge4a\left(b+c\right).4bc\Rightarrow b+c\ge16abc\left(ĐPCM\right)\)
dấu = xảy ra <=>\(\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)
^_^
Câu trả lời hay nhất: áp dụng BĐT Côsi cho hai số không âm có
1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc
p/s:kham khảo
sai đề kìa
bộ sai chỗ nào