giá trị biểu thức: (a x 4 - b x 5) : 4 với a = 215; b = 76
* chỉ cần đáp án *
Help mee
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ (215 x 4 - 76 x 5): 4}\) \(=\left(860-380\right):4=480:4=120.\)
a, a x 6 = 3 x 6 = 18
b, a + b = 4 + 2 = 6
c, b + a = 2 + 4 = 6
d, a - b = 8 - 5 = 3
e, m x n = 5 x 9 = 45
( 215 x 4 - 76 x 5 ) : 48
= ( 860 - 380 ) : 48
= 480 : 48
= 10
^ - ^
( 215 x 4 - 76 x 5 ) : 48
= ( 860 - 380 ) : 48
= 480 : 48
= 10
Xong rồi đấy bạn =))
( đg để ý 1 ng` trên đêy )
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
1. Đề bài không có b. Bạn coi lại đề.
2.
\(B=\left[\frac{1}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{1}{(\sqrt{x}+2)^2}\right]-(\sqrt{x}+2)\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}+2)-(\sqrt{x}-2)^2}{(\sqrt{x}-2)^2(\sqrt{x}+2)^2}-(\sqrt{x}+2)\)
\(=\frac{4(\sqrt{x}-2)}{(\sqrt{x}-2)^2(\sqrt{x}+2)^2}-(\sqrt{x}+2)=\frac{4}{(\sqrt{x}-2)(\sqrt{x}+2)^2}-(\sqrt{x}+2)\)
\(=\frac{4}{(x-4)(\sqrt{x}+2)}-(\sqrt{x}+2)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(\dfrac{B}{A}=\dfrac{\sqrt{x}}{\sqrt{x}-2}:\dfrac{\sqrt{x}+5}{2\sqrt{x}-4}\)
\(\Leftrightarrow\dfrac{B}{A}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}+5}\)
\(\Leftrightarrow\dfrac{B}{A}=\dfrac{2\sqrt{x}}{\sqrt{x}+5}\)
Để \(\dfrac{B}{A}\) nguyên thì \(2\sqrt{x}⋮\sqrt{x}+5\)
\(\Leftrightarrow2\sqrt{x}+10-10⋮\sqrt{x}+5\)
mà \(2\sqrt{x}+10⋮\sqrt{x}+5\)
nên \(-10⋮\sqrt{x}+5\)
\(\Leftrightarrow\sqrt{x}+5\inƯ\left(-10\right)\)
\(\Leftrightarrow\sqrt{x}+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
\(\Leftrightarrow\sqrt{x}+5\in\left\{5;10\right\}\)(Vì \(\sqrt{x}+5\ge5\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\sqrt{x}\in\left\{0;5\right\}\)
hay \(x\in\left\{0;25\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;25\right\}\)
Vậy: Để \(\dfrac{B}{A}\) nguyên thì \(x\in\left\{0;25\right\}\)
120