Cho phương trình ax + by = c với a 0; b 0. Nghiệm của phương trình được biểu diễn bởi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình bậc nhất hai ẩn ax + by = c luôn có vô số nghiệm
Tập nghiệm của phương trình được biểu diễn bởi đường thẳng d: ax + by = x
Ta có với a ≠ 0; b ≠ 0 thì ax + by = c ⇔ by = −ax + c ⇔ y = − a b x + c b
Nghiệm của phương trình là S = x ; − a b x + c b | x ∈ ℝ
Vậy cả A, B, C đều đúng
Đáp án: D

Đường tròn (C) tâm I(1;-3) bán kính \(R=4\)
Tiếp tuyến d vuông góc với 6x+8y-3=0 nên nhận \(\left(4;-3\right)\) là 1 vtpt
Tiếp tuyến d có dạng: \(4x-3y+c=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|4.1-3.\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
\(\Leftrightarrow\left|c+13\right|=20\Rightarrow\left[{}\begin{matrix}c=7\left(loại\right)\\c=-33\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\\c=-33\end{matrix}\right.\)

Lời giải:
Giả sử pt có nghiệm $(x,y)$ nguyên dương.
$ax+by=ab\vdots a$
$\Rightarrow by\vdots a$. Mà $(a,b)=1$ nên $y\vdots a$
$ax+by=ab\vdots b\Rightarrow ax\vdots b\Rightarrow x\vdots b$
Đặt $y=am, x=bn$ với $m,n$ nguyên.
Vì $x,y$ nguyên dương, $a,b$ lại là stn khác 0 nên $m,n$ nguyên dương.
Khi đó: $ab=ax+by=abn+bam=ab(m+n)$
$\Rightarrow 1=m+n$
Vì $m,n$ nguyên dương nên $m+n\geq 2$. Do đó việc $m+n=1$ vô lý.
Vậy điều giả sử là sai. Tức là không tồn tại $x,y$ nguyên dương.

6:
a: f(-2)=-1/2*(-2)^2=-2
=>Loại
b: f(4)=-1/2*4^2=-8=yB
=>B thuộc (P)
c: f(2)=-1/2*2^2=-2
=>Loại
5: f(-2)=-1/4*(-2)^2=-1/4*4=-1
=>A thuộc (P)
4: tính chất:
Nếu a>0 thì hàm số đồng biến khi x>0 và nghịch biến khi x<0
Nếu a<0 thì hàm số đồng biến khi x<0 và nghịch biến khi x>0
y=1/2x^2: Hàm số đồng biến khi x>0 và nghịch biến khi x<0
y=-3x^2: Hàm số đồng biến khi x<0 và nghịch biến khi x>0
Ta có với a ≠ 0; b ≠ 0 thì ax + by = c ⇔ by = −ax + c ⇔ y = − a b x + c b
Nghiệm của phương trình được biểu diễn bởi x ∈ R y = − a b x + c b
Đáp án: A