K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

Giải:

Gọi \(a_1=a\), \(a_2=b,a_3=c,a_4=d\)

Ta có: \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=b.d\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(bk\right)^3+\left(ck\right)^3+\left(dk\right)^3}{b^3+c^3+d^3}=\frac{b^3.k^3+c^3.k^3+d^3.k^3}{b^3+c^3+d^3}=\frac{k^3\left(b^3+c^3+d^3\right)}{b^3+c^3+d^3}=k^3\) (1)

\(\frac{a}{d}=\frac{bk}{d}=\frac{ckk}{d}=\frac{dkkk}{d}=k^3\) (2)

Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) hay \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\) ( đpcm )

 

30 tháng 10 2016

đợi t lm soạn nốt văn đã

11 tháng 7 2019

7 tháng 10 2016

Ta có:

\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)

6 tháng 10 2016

vt rõ đề đi

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

22 tháng 11 2021

1+1= 2 nha
Em lo học đi, ở đó đừng nói bậy. Nếu em khó khăn thì báo cho nhà trường để giúp nghe


 

25 tháng 2 2020

Ta có a1 +a2+...+a20 <0 
Lại có a2+a3+a4 >0;
          a5 +a6+a7 >0;
          a8+a9+a10>0;
          a11+a12+a13>0;
          a15+a16+a17>0;
          a18 +a19+a20>0;
          a1>0
          => a14<0;
Lại có a1+a2+a3 >0;
           a4+a5+a6>0;
            ....
            a10+a11+a12>0;
             a15+a16+a17>0;
             a18+a19+a20>0;
             => a13+a14<0;
              mà a12+a13+a14>0;
              =>a12>0;
              => a1.a12>0;
               a1.a14+a14.a12<0;
               =>a1.a14+a14.a12<a1.a12

7 tháng 2 2019

Vì: a1,a2,....,a5 chỉ nhận các giá trị 1 hoặc -1

nên: a1a2,a2a3,....,a5a1 chỉ nhận các giá trị như zệ

S=0. khi đó số số hạng -1 bằng 1

mà tổng trên có 5 số hạng ko chia hết cho 2 (vô lí)

Vậy............................. =))