cho biểu thức: A= \(\frac{x}{\sqrt{x}-1}-\frac{2x-\sqrt{x}}{x-\sqrt{x}}\) với ( a\(\ge\)0; a \(\ne\)4)
a) rút gọn biểu thức A
b) tìm giá trị của A sao cho P=a+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề nha: \(\sqrt{x^3-1}\) thành \(\sqrt{x^3}-1\)
\(B=\left(\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(B=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(B=\frac{\left(x+\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b/ Để B= 3\(\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=16\)
\(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}.\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=x-1\)
b/ \(2x^2+P\le0\Leftrightarrow2x^2+x-1\le0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\le0\Leftrightarrow2x-1\le0\Rightarrow x\le\frac{1}{2}\)
Kết hợp ĐKXĐ ta được \(0\le x\le\frac{1}{2}\)
\(2x^2-2+x+1=2\left(x-1\right)\left(x+1\right)+x+1=\left(2x-1\right)\left(x+1\right)\)
a,
\(P=\left(\frac{2x}{x\sqrt{x}-x+\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
\(=\left[\frac{2x}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\frac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]:\frac{x+1+\sqrt{x}}{x+1}\)
\(=\frac{2x-x-1}{\left(x+1\right)\left(\sqrt{x}-1\right)}.\frac{x+1}{x+\sqrt{x}+1}\)
\(=\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
b,
\(P=-\frac{1}{7}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x+\sqrt{x}+1}=-\frac{1}{7}\)
\(\Leftrightarrow7\sqrt{x}+7=-x-\sqrt{x}-1\)
\(\Leftrightarrow x+8\sqrt{x}+8=0\)
\(\Leftrightarrow\left(\sqrt{x}+4\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+4=2\sqrt{2}\\\sqrt{x}+4=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\sqrt{2}-4\\\sqrt{x}=-2\sqrt{2}-4\end{matrix}\right.\)
\(\Rightarrow\text{phương trình vô nghiệm}\)
Vậy không tồn tại \(x\) thỏa mãn \(P=-\frac{1}{7}\)
Bài 1:
Thay x=9 vào biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\), ta được:
\(\frac{2\cdot\sqrt{9}+1}{\sqrt{9}+2}=\frac{2\cdot3+1}{3+2}=\frac{7}{5}\)
Vậy: \(\frac{7}{5}\) là giá trị của biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\) tại x=9
Bài 2:
a) Ta có: \(B=\left(\frac{x+14\sqrt{x}-5}{x-25}+\frac{\sqrt{x}}{\sqrt{x}+5}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(=\left(\frac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right)\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(=\frac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(=\frac{2x+10\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\cdot\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+2}\)
\(a,A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\Rightarrow A=\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\Rightarrow A=\frac{x+2+x-\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(\Rightarrow\frac{3x+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(b,Tacó:P=\frac{A}{B}=\frac{3x+3}{2\left(x+\sqrt{x}+1\right)}\)
\(\Rightarrow P=\frac{3}{2}.\frac{x+1}{x+\sqrt{x}+1}\)
\(\Rightarrow P=\frac{3}{2}.\frac{x+1}{x+1+\sqrt{x}}\)
\(\Rightarrow P=\frac{3}{2}.\left(1-\frac{\sqrt{x}}{x+1+\sqrt{x}}\right)\)
\(\Rightarrow P\le\frac{3}{2}.\left(1-0\right)\)
\(\Rightarrow P\le\frac{3}{2}\)
\(\Rightarrow Max_P=\frac{3}{2}\)
1, a, ĐKXĐ: x > 0
\(\Rightarrow P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(\Rightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\)
\(\Rightarrow P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)
\(\Rightarrow P=x+\sqrt{x}-2\sqrt{x}\)
\(\Rightarrow P=x-\sqrt{x}\)
b, Thay x=100 vào biểu thức P, ta có:
P= 100 - \(\sqrt{100}\)
\(\Rightarrow P=100-10=90\)
Vậy với x=100 thì P=90
c, Ta có: P= \(x-\sqrt{x}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi...
2, a, ĐKXĐ: x \(\ge\) 0, x \(\ne\) 1
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)
\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1-\sqrt{x}-2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)
\(\Rightarrow\)A= \(\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{x-1}{1}\)= x-1
b, Để \(\frac{1}{A}\)là số tự nhiên (x \(\ge0\), \(x\ne1\))
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
Vậy x=2 thì \(\frac{1}{A}\) là số tự nhiên.