K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

Đường cao MD và NE mới đúng.

Hướng dẫn

a) Xét \(\Delta MEN\)\(\Delta NDM\)

\(\widehat{MEN}=\widehat{MDN}=90^0\) ( đường cao MD; NE)

MN chung ; \(\widehat{NME}=\widehat{MND}\) ( tam giác MNP cân)

=> 2 tam giác bằng nhau => MD = NE

b) MD = NE

=> MP - PE = NP - PD

Mà MP = PN => PD = PE

c) PE = PD ; PM=PN

=> \(\frac{PE}{PM}=\frac{PD}{PN}\)

=> ED//MN ( Ta-lét)

18 tháng 9 2021

cần gấp nhé , ai nhanh mik chọn đúng cho :333

 

18 tháng 9 2021

\(ME=MF\Rightarrow M\in\) đường trung trực của EF\((1)\)

\(ME=MF;MN=MP\left(GT\right)\\ \Rightarrow MN-ME=MP-MF\\ \Rightarrow NE=FP\)

Tam giác MNP cân tại M có MH là đường cao nên cũng là trung tuyến

\(\left\{{}\begin{matrix}NE=PF\\\widehat{ENH}=\widehat{FPH}\left(\Delta MNP.cân.tại.M\right)\\NH=HP\end{matrix}\right.\Rightarrow\Delta NEH=\Delta PFH\left(c.g.c\right)\\ \Rightarrow EH=FH\)

\(\Rightarrow H\in\) trung trực của EF\((2)\)

\(\left(1\right)\left(2\right)\Rightarrow MH\) là trung trực của EF

Vậy E đối xứng F qua MH

 

1: Xét ΔNMI và ΔNEI co

NM=NE

góc MNI=góc ENI

NI chung

=>ΔNMI=ΔNEI

=>IM=IE

=>ΔIME cân tại I

2: góc KME+góc NEM=90 độ

góc PME+góc NME=90 độ

mà góc NEM=góc NME

nên góc KME=góc PME

=>ME là phân giác của góc KMP

3: góc MIQ=90 độ-góc MNI

góc MQI=góc NQK=90 độ-góc PNI

mà góc MNI=góc PNI

nên góc MIQ=góc MQI

=>ΔMIQ cân tại M

4: Xét ΔIMF vuông tại M và ΔIEP vuông tại E có

IM=IE

góc MIF=góc EIP

=>ΔIMF=ΔIEP

=>MF=EP

Xét ΔNFP có NM/MF=NE/EP

nên ME//FP

22 tháng 2 2023

thanks you bạn

 

30 tháng 5 2021

undefined

30 tháng 5 2021

undefined

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có 

NA chung

NA=ND(gt)

Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)

\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)

mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)
3 tháng 5 2023

Tự kẻ hình nha

a) - Vì tam giác MNP cân tại M (gt)
=> MN = MP (định nghĩa)
     góc MNP = góc MPN (dấu hiệu)
- Vì NH vuông góc với MP (gt)
=> tam giác NHP vuông tại H 
- Vì PK vuông góc với MN (gt)
=> tam giác PKN vuông tại K
- Xét tam giác vuông NHP và tam giác vuông PKN, có:
    + Chung NP
    + góc HPN = góc KNP (cmt)
=> tam giác vuông NHP = tam giác vuông PKN (cạnh huyền - góc nhọn)

b) Vì tam giác vuông NHP = tam giác vuông PKN (cmt)
=> góc HNP = góc KPN (2 góc tương ứng)
=> tam giác ENP cân tại E (dấu hiệu)

c) - Vì tam giác ENP cân tại E (cmt)
=> EN = EP (định nghĩa)
- Xét tam giác MNE và tam giác MPE, có:
    + Chung ME 
    + MN = MP (cmt)
    + EN = EP (cmt)
=> tam giác MNE = tam giác MPE (ccc)
=> góc NME = góc PME (2 góc tương ứng)
=> ME là đường phân giác góc NMP (tc)