Cho tam giác ABC có BC = 5 cm. Trên tia AB lấy 2 điểm K và D sao cho AK = BD. Vẽ KI // BC; DE // BC ( I; E thuộc AC )
a) CM: AI = CE b) Tính độ dài DE + KI help !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bHình tự vẽ;
a)Tam giác ABC có:
Góc A+Góc B+Góc C=180 độ
=>Góc C=180 -60-90=30 độ
Vì tia BD là tia phân giác của góc B nên
B1=B2+1/2 góc B=30 độ
Tam giác BDC có:
Góc B+Góc D+Góc C=180 độ
=> góc D=180-30-30=120 độ
Vậy góc BDC=120 độ
b)Trong một tam giác vuông,hai góc nhọn phụ nhau nên:
Góc D=90-góc B
Chung cạnh BD
Ta lại có góc B1=góc B2=>góc D1=góc D2
Từ đó suy ra tam giác BDH=tam giác BDA
Gọi E là trung điểm của DK
Ta có: BE là đường trung bình của tam giác ADK
\(\Leftrightarrow BE=\frac{1}{2}AK\)(1)
Và BE\\AK
Suy ra: \(\widehat{EBM}=\widehat{C}\)(so le trong)
Chứng minh tam giác BME=tam giác CMK (tự CM)
Suy ra: BE=CK(2)
Từ (1) và (2)
Suy ra: \(CK=\frac{1}{2}AK\Leftrightarrow AK=2KC\)
Vậy....
a) Xét ΔHBA và ΔABC có
\(\widehat{B }\) chung
\(\widehat{BHA}=\widehat{BAC}\)=90o
=> ΔHBA ∼ ΔABC (gg)
b) xét ΔABC có \(\widehat{BAC} \)=90o
=> AC2+AB2=BC2 (đl pitago)
=>162+122=BC2
=> BC=20 cm
Ta có SΔABC=\(\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\)
=> AB.AC=AH.BC
=>12.16=AH.20
=> AH=9.6
Xét ΔABH có \(\widehat{BHA}\)=90o
=> HA2+HB2=AB2 (đl pitago)
=>9.62 + HB2=122
=> HB=7.2 cm
c) Xét ΔABC có
AD là phân giác (D∈BC)
=> \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)(tc đường pg trong Δ)
=>\(\dfrac{BD}{BC-BD}=\dfrac{3}{4}\)=>\(\dfrac{BD}{20-BD}=\dfrac{3}{4}\)
=> BD=\(\dfrac{60}{7}\) cm
=> CD=20 - \(\dfrac{60}{7}\)=\(\dfrac{80}{7}\) cm
d) Xét ΔAHC có
KN // HC (MN//BC , K ∈ MN , H∈ BC,(K∈AH ,N∈AC))
=> \(\dfrac{AN}{AC}=\dfrac{AK}{AH}=\dfrac{KN}{HC}\)( hệ quả đl ta-lét)
=>\(\dfrac{AN}{AC}=\dfrac{3.6}{9.6}=\dfrac{KN}{HC}\)
Xét ΔABC có
MN// BC (M∈AB ,N∈AC)
=> \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)=>\(\dfrac{3.6}{9.6}=\dfrac{MN}{20}\) => MN =7.5 cm
KH=AH-KH =9.6-3.6=6 cm
Xét tg MNCB có MN//BC
=> tg MNCB là hình bình hành (dhnb)
có AH⊥BC => KH⊥BC (K∈AH)
=> SBMNC = \(\dfrac{KH.\left(MN+BC\right)}{2}\)=\(\dfrac{6.\left(7.5+20\right)}{2}\)=82.5cm2
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)