K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bHình tự vẽ;

a)Tam giác ABC có:

Góc A+Góc B+Góc C=180 độ

                  =>Góc C=180 -60-90=30 độ

Vì tia BD là tia phân giác của góc B nên

B1=B2+1/2 góc B=30 độ 

Tam giác BDC có:

Góc B+Góc D+Góc C=180 độ

       => góc D=180-30-30=120 độ

Vậy góc BDC=120 độ

b)Trong một tam giác vuông,hai góc nhọn phụ nhau nên:

Góc D=90-góc B

        Chung cạnh BD

Ta lại có góc B1=góc B2=>góc D1=góc D2

Từ đó suy ra tam giác BDH=tam giác BDA

22 tháng 11 2019

to be contuniu

29 tháng 9 2018

Gọi E là trung điểm của DK

Ta có: BE là đường trung bình của tam giác ADK

\(\Leftrightarrow BE=\frac{1}{2}AK\)(1)

Và BE\\AK

Suy ra: \(\widehat{EBM}=\widehat{C}\)(so le trong)

Chứng minh tam giác BME=tam giác CMK (tự CM)

Suy ra: BE=CK(2)

Từ (1) và (2)

Suy ra: \(CK=\frac{1}{2}AK\Leftrightarrow AK=2KC\)

Vậy....

13 tháng 4 2017

vẽ hình : B A C D

21 tháng 5 2021

a) Xét ΔHBA và ΔABC có

\(\widehat{B }\) chung

\(\widehat{BHA}=\widehat{BAC}\)=90o

=> ΔHBA ∼ ΔABC (gg)

b) xét ΔABC có \(\widehat{BAC} \)=90o

=> AC2+AB2=BC2 (đl pitago)

=>162+122=BC2

=> BC=20 cm

Ta có SΔABC=\(\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\)

=> AB.AC=AH.BC

=>12.16=AH.20

=> AH=9.6

Xét ΔABH có \(\widehat{BHA}\)=90o

=> HA2+HB2=AB2 (đl pitago)

=>9.62 + HB2=122

=> HB=7.2 cm

c) Xét ΔABC có

AD là phân giác (D∈BC)

=> \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)(tc đường pg trong Δ)

=>\(\dfrac{BD}{BC-BD}=\dfrac{3}{4}\)=>\(\dfrac{BD}{20-BD}=\dfrac{3}{4}\)

=> BD=\(\dfrac{60}{7}\) cm

=> CD=20 - \(\dfrac{60}{7}\)=\(\dfrac{80}{7}\) cm

d) Xét ΔAHC có

KN // HC (MN//BC , K ∈ MN , H∈ BC,(K∈AH ,N∈AC))

=> \(\dfrac{AN}{AC}=\dfrac{AK}{AH}=\dfrac{KN}{HC}\)( hệ quả đl ta-lét)

=>\(\dfrac{AN}{AC}=\dfrac{3.6}{9.6}=\dfrac{KN}{HC}\)

Xét ΔABC có

MN// BC (M∈AB ,N∈AC)

=> \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)=>\(\dfrac{3.6}{9.6}=\dfrac{MN}{20}\) => MN =7.5 cm

KH=AH-KH =9.6-3.6=6 cm

Xét tg MNCB có MN//BC 

=> tg MNCB là hình bình hành (dhnb)

có AH⊥BC => KH⊥BC (K∈AH)

=> SBMNC = \(\dfrac{KH.\left(MN+BC\right)}{2}\)=\(\dfrac{6.\left(7.5+20\right)}{2}\)=82.5cm2

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

2 tháng 4 2019

Học sinh tự vẽ hình.