2.Cho góc nhọn xOy. Trên cạnh Ox lấy A; B ( A nằm giữa O; B ) và trên cạnh Oy lấy C; D ( C nằm giữa O; D ). Chứng minh AB + CD < AD + BC
1.Cho Δ ABC có AB = 15cm, BC = 8cm. Tính AC biết độ dài này là một số nguyên tố >42
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox
Chohttps://olm.vn/cau-hoi/cho-goc-nhon-xoy-tren-canh-ox-lay-hai-diem-a-va-b-sao-cho-a-nam-giua-o-va-b-tren-canh-oy-lay-2-diem-c-va-d-sao-cho-c-nam-giua-o-va-d-cm-ab-c.5323815386517?lop=7
a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có
OA=OB(gt)
\(\widehat{AOB}\) chung
Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)
Suy ra: AH=BK(hai cạnh tương ứng)
a)\(\Delta OAD=\Delta OBC\left(cgv-gnk\right)\Rightarrow AD=BC\)
b)\(\Leftrightarrow OBD=OBC;D=C\)
\(\Rightarrow MOY=MOX\)(Đ/L TỔNG 3 GÓC CỦA 1 TAM GIÁC )
Vậy OM là tia phân giác của góc xoy (mình ko biết viết dấu góc ,bạn thông cảm)
a.Xét $\triangle$OAI và $\triangle$OBI có:
$\widehat{AOI}$ = $\widehat{BOI}$(OI là phân giác của $\widehat{xOy}$)
OB = OA(gt)
OI chung
=> $\triangle$OAI = $\triangle$OBI(c-g-c)
=>$\widehat{OIA}$ = $\widehat{OIB}$(2 góc t/ứ)
mà $\widehat{OIA}$ + $\widehat{OIB}$ = $180^0$
=>$\widehat{OIA}$ = $\widehat{OIB}$ = $180^0$ : 2 = $90^0$
=> OI$\bot$AB(đpcm)
b.Xét $\triangle$OBA có
AD là đng cao t/ứ vs OB(gt)
OI là đng cao t/ứ vs AB(cmt)
AD cắt OI tại C(gt)
=>C là trực tâm của $\triangle$OBA(tính chất 3 đng cao của $\triangle$)
=>BC ⊥Ox(đpcm)
a, Xét △OBD vuông tại D và △OAC vuông tại C
Có: xOy là cạnh chung
OB = OA (gt)
=> △OBD = △OAC (ch-gn)
b, Vì △OBD = △OAC (cmt) => OD = OC (2 cạnh tương ứng) và OBD = OAC (2 góc tương ứng)
Ta có: OD + AD = OA và OC + CB = OB
Mà OA = OB (gt) ; OD = OC (cmt)
=> AD =BC
Xét △CIB vuông tại C và △DIA vuông tại D
Có: BC = AD (cmt)
CBI = DAI (2 góc tương ứng)
=> △CIB = △DIA (cgv-gnk)
=> IC = ID (2 cạnh tương ứng)
c, Xét △AOI và △BOI
Có: OA = OB (gt)
OI là cạnh chung
IA = IB (△DIA = △CIB)
=> △AOI = △BOI (c.c.c)
=> AOI = BOI (2 góc tương ứng)
=> OI là tia phân giác của góc AOB
hay OI là tia phân giác của góc xOy