K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

Áp dụng đinh lý Pitago cho các tam giác vuông $ABH, ACH$ ta có:

$AH^2=AB^2-BH^2=AB^2-18^2$

$AH^2=AC^2-CH^2=AC^2-32^2$

$\Rightarrow AB^2-18^2=AC^2-32^2$

$\Leftrightarrow AB^2=AC^2-700(1)$

Mặt khác, áp dụng định lý Pitago cho tam giác vuông $ABC$:

$AB^2+AC^2=BC^2=(BH+CH)^2=(18+32)^2=2500$

$\Rightarrow AB^2=2500-AC^2(2)$

Từ $(1);(2)\Rightarrow AC^2-700=2500-AC^2\Rightarrow AC=40$ (cm)

$AB^2=AC^2-700=1600-700=900\Rightarrow AB=30$ (cm)

Vậy........

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Hình vẽ:

Định lí Pitago

9 tháng 7 2016

Áp dụng định lí Pi ta go vào tam giác vuông AHB ta có

\(AB^2=AH^2+BH^2\) =>\(BH^2=AB^2-AH^2\)=>\(BH=\sqrt{30^2-24^2}=\sqrt{324}=18\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AH^2=BH.CH\)=>\(HC=\frac{AH^2}{BH}\)=>\(HC=\frac{24^2}{18}=\frac{576}{18}=32\left(cm\right)\)

Ta có  \(BC=HC+HB\) => \(BC=32+18=50\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AC^2=BC.HC\)

=>\(AC=\sqrt{BC.HC}=\sqrt{50.32}=\sqrt{1600}=40\left(cm\right)\)*Chỗ này bạn dùng Pitago tính cũng được nha*

 

 

 

9 tháng 7 2016

Ta có góc HBD+ góc ABH = 90 độ mà góc ACH + góc ABH = 90 độ 

=> góc HBD = góc ACH 

Xét tam giác BHD và tam giác CHA có 

góc BHD = góc CHA = 90 độ

góc HBD = góc ACH (chứng minh trên)

Do đó tam giác BHD ~ tam giác CHA

=> \(\frac{BD}{BH}=\frac{AC}{HC}\)

=>\(BD=\frac{AC.BH}{HC}=\frac{18.40}{32}=\frac{720}{32}=22,5\left(cm\right)\)

 

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

c: Xét ΔBEC và ΔADC có

CB/CA=CE/CD

góc C chung

=>ΔBEC đồg dạng vơi ΔADC

5 tháng 3 2023

c.ơn ạ

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: góc DAH=góc HAC=góc DHA

=>ΔDAH cân tại D

=>góc DHB=góc DBH

=>DH=DB=DA
=>D là trung điểm của AB

=>DH=1/2AB

12 tháng 5 2023

mình đg cần câu c bạn biết làm câu c không

 

A B C H 8cm 32cm ??? Chỉ mag TC minh họa 

AD định lí Py ta go

\(AB^2=AH^2+BH^2=AH^2+8^2=AH^2+64\)

\(\Rightarrow AB=AH^2+64\)

Thực hiện tiếp vs AC 

31 tháng 3 2022

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)

\(\Rightarrow AH=\dfrac{16.12}{20}=9,6\left(cm\right)\)

23 tháng 3 2022

             xét tam giác ABC vuông tại A ( gt)

                 \(AB^2+AC^2=BC^2\)

          =>  \(BC^2=AB^2+AC^2\)

                         =  \(21^2+28^2=1225\)

          =>  BC    =  \(\sqrt{1225}=35\left(BC>0\right)\)

             VẬY BC = 35 CM