cho tam giác ABC cân tại A có góc A<90độ từ B kẻ đường vuông góc AC; C/m AM/AC=2(AB/BC)^2-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tự vẽ hình
a, xét tam giác abh và tam giác ack có
góc a chung
ab=ac(gt)
góc ahb=góc ahc = 90 độ(gt)
=>tam giác abh=tam giác ack(gcg)
b từ cma có tam giác abh=tam giác ack
=>ah=ak (2 cạnh tg ứng)
maf ab=ac(gt)
=>ab-ak=ac-ah
=>bk=ch
xét tam giác okb và tam giác ohc có
góc okb = góc ohc= 90 độ(gt)
bk=ch(cmt)
góc kob = góc goc(đối đỉnh)
=>tam giác okb =tam giác ohc (gcg)

a) Xét ∆ABD có :
AH là trung trực đồng thời là trung tuyến
=> ∆ABD cân tại A
Mà B = 60°
=> ∆ABD đều
b ) Ta có : CAD = BAC - BAD
= 90° - 60° = 30°
=> EAD = 30°
Ta có : ADH = 60° (∆ABD đều)
Ta có : HAD = AHD - ADH =90° - 60° = 30°
Ta có AH vuông góc với BC
ED vuông góc với BC
=> AH//ED
=> HAD = ADE = 30° ( so le trong)
=> ∆AED cân tại E
A B C H D E F
a, xét tam giác AHB và tam giác AHD có : AH chung
góc AHB = góc AHD = 90 do AH là đường cao (gt)
HB = HD (gt)
=> tam giác AHB = tam giác AHD (2cgv)
=> AB = AD (đn)
=> tam giác ABD cân tại A (gt)
mà góc ABC = 60 (gt)
=> tam giác ABD đều (tc)
b, tam giác AHB = tam giác AHD (câu a)
=> góc HAB = góc HAD (đn) (1)
xét tam giác AHB vuông tại H => góc HAB = góc HBA = 90 (tc)
mà góc HBA = 60 (gt)
=> góc HAB = 90 - 60 = 30 và (1)
=> góc HAB = góc HAD = 30 (2)
có tam giác ABD đều (câu a) => góc BAD = 60 (đn)
góc BAD + góc DAC = góc BAC
mà góc BAC = 90 (gT)
=> góc DAC = 90 - 60 = 30 (gt) và (2)
=> góc DAC = góc DAH = 30 (3)
có AH _|_ BC do AH là đường cao (Gt) và ED _|_ BC (gt)
=> AH // ED (tc)
=> góc EDA = góc DAH (so le trong) và (3)
=> góc DAC = góc EDA
=> tam giác AED cân tại E (tc)
c, tam giác ABD đều (Câu a)
=> góc ABD = góc BAD (đn)
tam giác ABC vuông tại A (gt) => góc ACB + góc ABC = 90 => góc ACB = 90 - ABC
góc CAD + góc BAD = 90 => góc CAD = 90 - góc BAD
=> góc CAD = góc ACB
=> tam giác CAD cân tại D (đn)
=> DA = DC (đn)
xét tam giác CDF và tam giác ADH có : góc CDF = góc ADH (đối đỉnh)
góc CFD = góc AHD = 90
=> tam giác CDF = tam giác ADH (ch - gn)
=> FC = HA (đn)
DF = DH (đn)
=> tam giác DFH cân tại D (đn)
=> góc DFH = (180 - góc FDH) : 2 (tc) (4)
có góc FDH + góc HDA = 180 (kb)
mà góc HDA = 60 do tam giác ABD đều )
=> góc FDH = 180 - 60 = 120 và (4)
=> góc DFH = (180 - 120) : 2 = 30
góc DAH = 30 (câu b)
=> góc DFH = góc DAH = 30
=> tam giác FHA cân tại H (tc)
=> HF = HA (đn) mà HA = CF (Cmt)
=> HF = HA = CF

đề bài của bạn hình như ko đúng lắm. tưởng phải cân ở đỉnh A chứ