Cho tam giác ABC vuông cân tại A; BD là trung tuyến. Qua A vẽ đường thẳng vuông góc với BD cắt BC tại E. Chứng minh: EB=2EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC vuông cân tại A nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 1 = 45 0
Vì ∆ BCD vuông cân tại B nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 2 = 45 0
∠ (ACD) = ∠ C 1 + ∠ C 2 = 45 0 + 45 0 = 90 0
⇒ AC ⊥ CD
Mà AC ⊥ AB (gt)
Suy ra: AB //CD
Vậy tứ giác ABCD là hình thang vuông.
ΔBDC vuông cân tại B
=>góc BCD=góc BDC=45 độ
ΔABC vuông cân tại A
=>góc ABC=góc ACB=45 độ
góc ABC=góc DCB
mà hai góc này ở vị trí so le trong
nên AB//DC
mà AB vuông góc AC
nên DC vuông góc AC
Xét tứ giác ABDC có
AB//DC
góc CAB=90 độ
Do đó: ABDC là hình thang vuông
Tam giác ABC vuông cân tại A
⇒ ∠ (ACB) = 45 0
Tam giác EAC vuông cân tại E
⇒ ∠ (EAC) = 45 0
Suy ra: ∠ (ACB) = ∠ (EAC)
⇒ AE // BC (vì có cặp góc ở vị trí so le trong bằng nhau)
nên tứ giác AECB là hình thang có ∠ E = 90 0 . Vậy AECB là hình thang vuông
Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)
Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)
\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)
\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)
Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.
Hình dễ, bạn tự kẻ
- Từ A kẻ AH⊥BC (H∈BC)AH⊥BC (H∈BC). ΔABCΔABC vuông cân ở A có AH là đường cao đồng thời là đường trung tuyến
- Gọi giao điểm của AH và BD là G →G→G là trọng tâm ΔABC→AGAH=23ΔABC→AGAH=23
- ΔAEBcóBG⊥AE; AH⊥BE→GΔAEBcóBG⊥AE; AH⊥BE→G là trực tâm ΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CHΔABE→GE⊥AB→AC//GE→ECCH=23→EC=23CH
→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH→HE=13CH=13CH→BE=BH+HE=CH+13CH=43CH
- Ta có EB:EC=4CH32CH3=2→EB=2EC