Cho tam giác ABC cân tại C có góc C = 1200. Trên cạnh AB lấy D sao cho AD = a; BD = 2a . Tính CD theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 110 o D 105 o E
\(\widehat{EAC}=180^o-\widehat{BAC}=180^o-110^o=70^o\)
Tam giác ABC cân ở A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-110^o}{2}=35^o\) (1)
CE // AD => \(\widehat{ECD}+\widehat{ADC}=180^o\) (\trong cùng phía)
=> \(\widehat{ECD}=180^o-\widehat{ADC}=180^o-105^o=75^o\) (2)
Ta lại có: \(\widehat{ACE}=\widehat{ECD}-\widehat{ACB}=75^o-35^o=40^o\)
Trong tam giác ACE có \(\widehat{EAC}=70^o;\widehat{ACE}=40^o\)
nên góc còn lại \(\widehat{AEC}=180^o-70^o-40^o=70^o\)
Vậy tam giác ACE cân ở C và ta có:
\(70^o=\widehat{A}=\widehat{E}>\widehat{C}=40^o\)
CA = CE > AE
a,
Xét Δ ADC và Δ AEB
Ta có : AD = AE (gt)
AC = AB (Δ ABC cân tại A)
\(\widehat{DAC}=\widehat{EAB}\) (góc chung)
=> Δ ADC = Δ AEB (c.g.c)
b, Ta có : Δ ADC = Δ AEB (cmt)
=> \(\widehat{ACD}=\widehat{ABE}\)
a)Xét △ABE và △ACD có
AB = AC ( △ABC cân tại A)
AD = AE (gt)
\(\widehat{A}\) là góc chung
=> △ABE = △ACD (c-g-c)
=> BE = CD ( e cạnh tương ứng)
b) Vì △ABE = △ACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c)
Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)
\(\text{}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)
mà \(\widehat{ABE}=\widehat{ACD}\)
\(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=> △KBC là tam giác cân tại K
Lấy M trong ΔABC sao cho ΔMBC đều
=>góc MBC=góc MCB=góc ACB-góc MCB=20 độ
Ta có:AB=AC
MB=MC
DO đó: AM là trung trực của BC
mà ΔBAC cân tại A
nên AM là phân giác của góc BAC
=>góc BAM=góc CAM=20/2=10 độ
=>góc AMC=150 độ
Xét ΔCMA và ΔADC có
CM=AD(=BC)
góc MCA=góc DAC
AC chung
Do đó: ΔCMA=ΔADC
=>góc ADC=góc CMA=150 độ
=>góc BDC=30 độ