K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(A=\left(-3x^5y^3\right)^4;B=\left(2x^2z^4\right)\)

\(\Rightarrow A+B=\left(-3x^5y^3\right)^4+\left(2x^2z^4\right)\)

\(\Rightarrow\left(-3x^5y^3\right)^4+\left(2x^2z^4\right)=0\)

\(\left\{{}\begin{matrix}x^2\ge0\Rightarrow2x^2\ge0\\z^4\ge0\end{matrix}\right.\)

\(\Rightarrow2x^2z^4\ge0\)

\(\left(-3x^5y^3\right)^4\ge0\)

Dấu "=" xảy ra khi:

\(\Rightarrow\left\{{}\begin{matrix}2x^2z^4=0\\\left(-3x^5y^3\right)^4=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x^2z^4=0\\-3x^5y^3=0\end{matrix}\right.\)

Xét rồi kết luận là ok.mk đang bận xíu việc

2 tháng 12 2021

A

5 tháng 9 2018

Câu 1:

A = (3 - y)(4 - x)(2y + 3x)

6A = (6 - 2y)(12 - 3x)(2y + 3x)

Ta có:   \(\hept{\begin{cases}0\le x\le4\\0\le y\le3\end{cases}\Leftrightarrow\hept{\begin{cases}4-x\ge0\\3-y\ge0\\2y+3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}12-3x\ge0\\6-2y\ge0\\2y+3x\ge0\end{cases}}}\)

Áp dụng BĐT cô-si ta được:

\(\left(12-3x\right)+\left(6-2y\right)+\left(2y+3x\right)\ge3.\sqrt[3]{\left(12-3x\right)\left(6-2y\right)\left(2y+3x\right)} \)

\(\Leftrightarrow3.\sqrt[3]{6A}\le18\Leftrightarrow A\le36\)  

Dấu = xảy ra khi:

12 - 3x = 6 - 2y = 2y + 3x 

=> \(\hept{\begin{cases}3x+4y=6\\6x+2y=12\end{cases}\Rightarrow\hept{\begin{cases}x=2\left(n\right)\\y=0\left(n\right)\end{cases}}}\)

Vậy.....

11 tháng 3 2018

1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3

Hệ số: -6

phần biến: x2y3

bậc của đơn thức: 5

2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)

\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)

\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)

b, bậc cua đa thức P là 8

c, Thay x = 2, y = 0,5 vào P ta được

\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)

\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)

\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)

\(=2\)

5 tháng 6 2020

thanhk bạn

a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)

b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)

c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)

\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)

d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)

hay \(N=y^2-x^2\)