Cho A = \(\frac{10^{2012}-2}{10^{2013}-1}\); B = \(\frac{10^{2013}-2}{10^{2014}-1}\)
So sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)
Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)
\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)
Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)
Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)
b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)
Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)
Vậy A > B
Có gì sai cho sorry
a,
\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)
b,
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
\(B< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
Vậy A > B
Áp dụng bất đẳng thức :
\(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có :
\(B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
\(\Leftrightarrow B< A\)
So sánh 2 phân số sau $\frac{10^{2011}+10}{10^{2012}+10}v\text{à}\frac{10^{2012}-10}{10^{2013}-10}$102011+10102012+10 và102012−10102013−10
kick dzô chữ xanh là được!! OK
Ta có :
10. A = \(\frac{10.\left(10^{2011}+1\right)}{10^{2012}+1}\)
= \(\frac{10^{2012}+10}{10^{2012}+1}\)
= \(\frac{10^{2012}+1+9}{10^{2012}+1}\)
= \(\frac{10^{2012}+1}{10^{2012}+1}-\frac{9}{10^{2012}+1}\)
= 1 - \(\frac{9}{10^{2012}+1}\)
10 . B = \(\frac{10.\left(10^{2012}+1\right)}{10^{2013}+1}\)
= \(\frac{10^{2013}+10}{10^{2013}+1}\)
= \(\frac{10^{2013}+1+9}{10^{2013}+1}\)
= 1 - \(\frac{9}{10^{2013}+1}\)
Vì \(\frac{9}{10^{2012}+1}\) >\(\frac{9}{10^{2013}+1}\) nên 10.A > 10.B
=> A >B
Vậy ...........
a)
\(10A=\frac{10^{2002}+10}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)
\(10B=\frac{10^{2003}+10}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)
=> 10A > 10B => A > B
vì B<1 => \(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\)\(\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}\)\(=\frac{10^{2012}+1}{10^{2013}+1}=A\)
\(\Rightarrow A>B\)
\(\frac{10^{2012}+1}{10^{2013}+1}=\frac{\left(10^{2012}+1\right)\cdot10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1+9}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1}{\left(10^{2013}+1\right)\cdot10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}\left(1\right)\)
\(\frac{10^{2013}+1}{10^{2014}+1}=\frac{\left(10^{2013}+1\right)\cdot10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1+9}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1}{\left(10^{2014}+1\right)\cdot10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}\left(2\right)\)Từ (1)(2) => A > B
2. TA CÓ: D=\(\frac{2011+2012}{2012+2013}\)
=\(\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
VÌ 2012+2013>2012
MÀ \(\frac{2011}{2012+2013}<\frac{2011}{2012}\)(1)
VÌ 2012+2013>2013
MÀ \(\frac{2012}{2012+2013}<\frac{2012}{2013}\)(2)
TỪ (1) VÀ (2) \(\Rightarrow\frac{2011+2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}\)
VẬY C > D
TA có :
A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)
B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)
Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B
Vậy A < B