cho tam giác ABC vuông tại A; AH vuông góc với BC tại H:
chứng minh: 2AH2 + BH2 + CH2 = BC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề nha
cho tam giác ABC vuông tại A , trên tia đối tia AB lấy đỉnh M sao cho AB=AM a. CMR : tam giác ABC = tam giác AMC
b. kẻ AH vuông góc với BC tại H kẻ AK vuông gói với MC tại K CMR : BH = MK
c. CMR : HK // BM
Xét \(\Delta BACvà\Delta MACcó\)
AC:chung
AM=AB(gt)
\(\widehat{MAC}=\widehat{BAC}\)( vì AC⊥BC)
Áp dụng định lí Pitago cho 3 tam giác vuông ABH,ACH,ABC ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+CH^2=AC^2\)
\(AB^2+AC^2=BC^2\)
Cộng theo vế ba đẳng thức trên và rút gọn ta được \(2AH^2+BH^2+CH^2=BC^2\).