giả thiết:hình bình hành ABCD có e thuộc tia đối AD; AD=AE F thuộc tia đối CD; CD=CT kết luận:a) E đối xứng với F qua B b) hình bình hành ABCD cần thêm điều kiện gì dể E và F đối xứng với nhau qua BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D F E G O H
a) Từ tứ giác AEBG là hình bình hành suy ra \(\frac{DE}{BG}=\frac{DE}{AE}=\frac{DC}{AB}=\frac{FD}{FB}\) (1)
Đồng thời ^FDE = 1800 - ^ADE = 1800 - ^ACB = ^FBG (2)
Từ (1) và (2) suy ra \(\Delta\)FED ~ \(\Delta\)FGB (c.g.c). Do vậy FD.FG = FB.FE (đpcm).
b) Tương tự câu a ta có \(\Delta\)FEC ~ \(\Delta\)FGA (c.g.c), suy ra ^FGA = ^FEC = 1800 - ^FEA
Vì ^FEA = ^FHA (Tính đối xứng) nên ^FGA = 1800 - ^FHA hay ^FGA + ^FHA = 1800
Vậy 4 điểm F,H,A,G cùng thuộc một đường tròn (đpcm).
A
BCDFEOa, Vì tứ giác ABCD là hình hình hành
⇒ ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪AD // BCAD = BC AB = CDAB // CD{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC{AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD{AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
⎧⎩⎨⎪⎪CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
⇒ CA, ED, FB đồng quy (tại trọng tâm của ΔCEF) (đpcm)
học tốt ;-;
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
bạn học đến phần nào rồi
đầu tiên CM được TgEMA =Tg FNC
=>AM=NC
=>TgOME=TgOCN
kẻ OB, OD
CM được TgOMD=TgONC
=>gócBON=gócDOM
=>Đpcm'''
có gi ko hiểu thì hỏi nhá
buồn ngủ quá
Kéo dài Kc cắt AD tại N
Ta có AB//CD nên góc BAD = góc CDN =60o
K đối xứng vs F qua BC nên góc BCD = góc KCB = 60o
góc CND = góc KCB = 60 độ
tam giác CND đều CN= DN
Lại có CK= DE ( cùng = CF)
KN=EN tam giác KNE đều
góc KEN= góc CDN = 60 độ
KE//CD//AB
2/Vẽ hình bình hành ADKE
góc ADk= góc BAC
vì cùng bù vs góc DAE nên góc KAD góc B
ΔADK=ΔBAC (c.g.c)
GỌi H là giao AM và BC
Ta có : góc B+góc BAH= góc KAD+ góc BAH= 90 độ AH vuông góc BC
Hạ E vuông góc DC tại M
Hạ K vuông góc DC tại N
=>EM//KN(1)
Vì F dx K qua BC
=>FC=CK
=>2 góc FCB=FCK
Mà A=C=60 độ
=>góc KCN=60
Xét 2 tam giác vuông EMD và KNC có:
ED=CK(cùng Bằng FC)
D= góc KCL
=> tam giác EMD=KNC (cạnh huyền góc nhọn )
=>EM=KN(2)
Từ (1) và (2) =>EKNM là HBH
=>EK//DC
=>EK//AB
{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
:v