K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

Vẽ AI, BI, CI cắt các cạnh đối diện thứ tự tại D,E,F.

Ta có công thức đường phân giác như sau:

\( AD^2 = \frac{{bc\left( {a + b + c} \right)\left( {b + c - a} \right)}}{{\left( {b + c} \right)^2 }} \)

Ta có:

\( \begin{array}{l} \frac{{IA}}{{ID}} = \frac{{BA}}{{BD}} = \frac{{CA}}{{CD}} = \frac{{b + c}}{a} \Leftrightarrow \frac{{IA}}{{AD}} = \frac{{b + c}}{{a + b + c}} \\ \Leftrightarrow IA^2 = AD^2 .\frac{{\left( {b + c} \right)^2 }}{{\left( {a + b + c} \right)^2 }} = \frac{{bc\left( {a + b + c} \right)\left( {b + c - a} \right)}}{{\left( {b + c} \right)^2 }}.\frac{{\left( {b + c} \right)^2 }}{{\left( {a + b + c} \right)^2 }} = \frac{{\left( {b + c - a} \right)bc}}{{a + b + c}} \\ \Leftrightarrow \frac{{IA^2 }}{{bc}} = \frac{{b + c - a}}{{a + b + c}} \\ \end{array} \)

Điều phải chứng minh

b) Từ câu a) ta suy ra được

\(\frac{IA^{^{2}}}{AB.AC}+\frac{IB^{2}}{BA.BC}+\frac{IC^{2}}{CA.CB}=1\)

\(\Leftrightarrow aIA^2+bIB^2+cIC^2=abc\)

Sử dụng BĐT Cauchy-Schwarz, ta có:

\(\left(IA+IB+IC\right)^2=\left(\dfrac{\sqrt{a}.IA}{\sqrt{a}}+\dfrac{\sqrt{b}.IB}{\sqrt{b}}+\dfrac{\sqrt{c}.IC}{\sqrt{c}}\right)^2\)

\(\le\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(aIA^2+bIB^2+cIC^2\right)\)

\(=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)abc=ab+bc+ca\)

\(\Rightarrow IA+IB+IC\le\sqrt{ab+bc+ca}\)

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Bài 1: 

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: XétΔABC có BC<AB<AC

nên \(\widehat{A}< \widehat{C}< \widehat{B}\)

20 tháng 8 2021

GẤP LẮM Ạ,NGAY BÂY GIỜ Ạ

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc CB

15 tháng 6 2022

chịu hoi =))))))

 

15 tháng 6 2022

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

24 tháng 9 2023

a) Ta có:

AH = BC : 4 = 24 : 4 = 6 (cm)

Diện tích ∆ABC:

24 . 6 : 2 = 72 (cm²)

b) Do D ∈ BC

AH ⊥ BC

⇒ AH ⊥ BD

Ta có:

BD = BC : 3 = 24 : 3 = 8 (cm)

Diện tích ∆ABD:

8 . 6 : 2 = 24 (cm²)

4 tháng 4 2017

S ABC là 108 cm2

4 tháng 4 2017

Ta có \(\frac{S_{ABC}}{S_{ADC}}=\frac{BC}{DC}=\frac{27}{9}=3\)( vì tam giác ABC và tam giác ADC có chung đường cao kẻ từ đỉnh A)

=> \(\frac{S_{ABC}}{36}=3\)

SABC=3x36=108(cm2)

Đáp số: 108 cm2

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023