K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

Toán lớp 7

a) Theo đề ra ta có: 

AB= 6 (cm) => \(AB^2=6^2=36\)

AC= 8 (cm) => \(AC^2=8^2=64\)

BC=10(cm) => \(BC^2=10^2=100\)

Ta thấy: 100=36+64 => \(BC^2=AB^2+AC^2\) => Tam giác ABC vuông tại A ( Theo định lý Py-ta-go đảo)

b) Xét tam giác vuông BAD và tam giác vuông BED, ta có: 

\(\widehat{B_1}=\widehat{B_2}\)(Do BD là tia phân giác của góc B)

Chung BD

=> \(\Delta BAD=\Delta BED\left(ch-gn\right)\)

=> DE=DA( cạnh tương ứng)

c) Xét tam giác EDC và tam giác ADF, có: 

\(\widehat{CED}=\widehat{FAD}\left(=90^o\right)\)

DE=DA

\(\widehat{D_1}=\widehat{D_2}\)( góc đối đỉnh)

=> \(\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF=DC( cạnh tương ứng)

*) Xét trong tam giác vuông EDC thì góc vuông E là góc lớn nhất =.> CD là cạnh lớn nhất trong tam giác đó => DC>DE

Mà DC=DF => DF>DE

d)

Do tam giác BED = tam giác BAD => BE=BA (1)

Tam giác EDC= tam giác ADF => EC=AF(2) 

Từ 1 và 2 => BE+EC=BA+AF=> BC=BF.

Xét tam giác BCK và tam giác BFK,có: 

BF=BC

\(\widehat{B_1}=\widehat{B_2}\)

Chung BK

=> \(\Delta BFK=\Delta BCK\left(c.g.c\right)\) => CK=KF (*)

và \(\widehat{BKC}=\widehat{BKF}\) mà 2 góc này kề bù với nhau nên mỗi góc có số đo là \(90^o\)

Vậy KB hay là BD là đường trung trực của đoạn thẳng FC.

P/S: ở câu c nếu không muốn viết dài dòng có thể viết : Do BC=BF nên tam giác BCF cân tại B mà BK là tia phân giác góc B nên BK hay BD là đường trung trực của đoạn thẳng FC 

 

10 tháng 5 2016

Huỳnh Châu Giang ơi ....... không biết nhưng cậu xem lại hình đi ..... thật sự nó là đường trung trực mà à đường cao cũng được ....... do đó là tam giác cân nên đường cao và đường trung trực hay là đường trung tuyến ứng với cạnh đối diện của cái góc mà không giống 2 góc kia ý ( không biết diễn giải =.=)

25 tháng 3 2016

A B C M

Ta có: \(AB^2+AC^2=6^2+8^2=100\)

            \(BC^2=10^2=100\)

 \(\Delta ABC\) có \(AB^2+AC^2+BC^2\left(=100\right)\)

Theo định lí đảo Py-ta-go có \(\Delta ABC\) vuông tại A 

Mà AM là đường trung tuyến của \(\Delta ABC\) 

Do đó: \(AM=\frac{BC}{2}=5\left(cm\right)\)

 

19 tháng 4 2020

Đây là câu trắc nghiệm nha

4 tháng 3 2019

xét tam giác abc và tam giác def có

ab/df=6/12=1/2

ac/ef=9/18=1/2

bc/de=12/24=1/2

=>tam giác abc đồng dạng vs tam giác dfe (ccc)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Vì chu vi tam giác ABC bằng 18cm

=> AB+AC+BC=18 => 4+AC+6=18 => AC=8 (cm)

Vì chu vi tam giác DEF bằng 27cm

=> DE+EF+DF=27 => 6+EF+12=27 => EF=9 (cm)

Ta thấy \(\begin{array}{l}\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\\ = \frac{4}{6} = \frac{8}{{12}} = \frac{6}{9} = \frac{2}{3}\end{array}\)

=> ΔABC ∽ ΔDEF

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Lời giải:

Kẻ đường cao $AH$

Ta thấy:

$\frac{BH}{AB}=\cos B\Rightarrow BH=AB\cos B=6\cos 60^0=3$ (cm)

$\frac{AH}{AB}=\sin B\Rightarrow AH=AB\sin B=6\sin 60^0=3\sqrt{3}$ (cm)

$CH=BC-BH=4-3=1$ (cm)

Áp dụng định lý Pitago cho tam giác vuông $AHC$:

$AC=\sqrt{AH^2+CH^2}=\sqrt{(3\sqrt{3})^2+1^2}=2\sqrt{7}$ (cm)

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Hình vẽ:

Ôn tập Hệ thức lượng trong tam giác vuông

16 tháng 4 2021

a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)

b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)

c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)

\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)

 

16 tháng 4 2021

a) Xét ΔHAC và ΔABC có:

∠(ACH ) là góc chung

∠(BAC)= ∠(AHC) = 90o

⇒ ΔHAC ∼ ΔABC (g.g)

b) Xét ΔHAD và ΔBAH có:

∠(DAH ) là góc chung

∠(ADH) = ∠(AHB) = 90o

⇒ ΔHAD ∼ ΔBAH (g.g)

c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.

⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)

Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)

∠(DEA)= ∠(BAH)

Xét ΔEAD và ΔBAC có:

∠(DEA)= ∠(BAH)

∠(DAE ) là góc chung

ΔEAD ∼ ΔBAC (g.g)

d) ΔEAD ∼ ΔBAC

ΔABC vuông tại A, theo định lí Pytago:

Theo b, ta có:

 

 

 

 

 

 

 

 

 

29 tháng 5 2022

Bạn tự vẽ hình nhé

a)

Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)

\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)

b)

Xét \(\Delta BGC\) và \(\Delta DGC\) có:

\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)

\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)

c)

Xét \(\Delta BCD\) có:

\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)

=> G là trọng tâm của \(\Delta BCD\)

=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC

Hay DG đi qua trung điểm BC

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

\(AH=\dfrac{AB\cdot AC}{BC}=3.6\left(cm\right)\)

b: \(BH=\dfrac{6^2}{7.5}=4.8\left(cm\right)\)

CH=BC-BH=2,7(cm)

13 tháng 2 2019

gọi cạnh AF là x,BC là y

ta có AB=AE+EB=3+6=9cm;

theo định lý Ta Lét đảo ,ta có :

AE/EB=AF/FC hay 3/6 = x/5

<=>3.5=6.x<=>15=6.x<=> x=2,5

=> AC =AF+FC=2,5+5=7,5cm

mặc khác ta có:

AE/AB=EF/BC hay 3/6=8/y

<=>3.y=6.8<=>3.y=48<=>y=16

=>BC=16cm