Cho tam giác ABC góc A = 900 ; AB=3 cm; AC=4cm
a) Tính BC, góc B, góc C
b)Phân giác của góc A cắt BC tại E. Tính BE, CE
c)Từ E kẻ EM,EN lần lượt vuông góc với AB, AC
Hỏi tứ giác AMEN là hình gì?
Tính chu vi và diện tích của tứ giác AMEN?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: C ^ = P ^ mà góc C và góc P là hai góc nhọn kề của tam giác ABC và tam giác MNP
Do đó để tam giác ABC và tam giác MNP bằng nhau theo trường hợp cạnh góc vuông – góc nhọn kề thì cần thêm điều kiện A C = M P
Đáp án A
1: BC=10cm
Xét ΔABC có BD là đường phân giác
nên AD/AB=DC/BC
=>AD/6=DC/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3(cm); BD=5(cm)
2: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{IAB}=\widehat{DCB}\)
Do đó: ΔABI\(\sim\)ΔCBD
a) Ta có: \(2\widehat{B}=7\widehat{C}\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}\)
Ta có: Tam giác ABC vuông tại A
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{B}+\dfrac{2}{7}\widehat{B}=90^0\)\(\Rightarrow\dfrac{9}{7}\widehat{B}=90^0\Rightarrow\widehat{B}=70^0\)
\(\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}=20^0\)
b) Ta có: AD là phân giác góc A
\(\Rightarrow\widehat{DAC}=\dfrac{1}{2}\widehat{A}=45^0\)
Xét tam giác ADC có:
\(\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{ADC}=180^0-\widehat{DAC}-\widehat{C}=180^0-45^0-20^0=115^0\)
S A B C = . AB. AC ≤ 1 2 . A B 2 + A C 2 2 = 1 4 . A B 2 + A C 2
Áp dụng định lý Py-ta-go cho ABC vuông tại A ta có:
Dấu “=” xảy ra AC = AB => ∆ ABC vuông cân
Đáp án cần chọn là: D
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
a) Xét ΔAMB và ΔAMC có
AM chung
BM=CM(M là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(c-c-c)
a) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB và AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)