K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Máy mình vẽ hình không được bạn vẽ giúp mình nha

a/Tứ giác ABOC CÓ

ABO=ACO=90 độ

=>ABO+ACO=180 Độ

=>ABOC là tứ giác nội tiếp

tứ giác ABOH có

AHO=ABO=90 độ (cùng nhìn AO)

=>AHO+ABO=180 độ

=>ABOH là tứ giác nội tiếp

b/Xét ADB và ABE

A là góc chung

ABD=AEB(cùng chắn BD)

=>ADB~ABE(góc.góc)

AB/AD=AE/AB

=>AB^2=AD*AE

Hiện tại mình chỉ có thể làm đến đấy câu c và câu d mình không biết làm

28 tháng 3 2017

uk mk cũng chưa nghĩ đc câu c , d

5 tháng 4 2016

cát tuyến là đường thẳng cắt đường tròn tại 2 điểm

5 tháng 4 2016

mà làm sao để em vẽ đc cát tuyến mà điểm thứ nhất cắt đg tròn nắm giữa điểm đầu và điểm cắt đg tròn thứ 2

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:

\(AH\cdot AO=AB^2\)(1)

Xét (O) có

\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD

\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ABD}=\widehat{AEB}\)

Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔAEB(g-g)

Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AE\cdot AD\)(2)

Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)

 

6 tháng 3 2021

phần c ???

 

9 tháng 7 2020

từ điểm A nằm ngoài đường tròn (O,R) vẽ tiếp tuyến AB,cát tuyến AMN với đường tròn( M nằm giữa A,N, B thuộc cung lớn MN) gọi C là điểm chính giữa cung nhỏ MN. đường thẳng MN lần lượt cắt OC và BC tại I và E.
a. Chứng minh tứ giác AIOB nội tiếp
b. Chứng minh tam giác ABE cân
c. Biết AB bằng 2R.Tính chu vi của đường tròn ngoại tiếp tứ giác AIOB theo R
đ. Kẻ tiếp tuyến thứ 2 AL của đường tròn O.Gọi K là giao điểm của BL và ÒA. Chứng minh AM.AN=AL bình, AK.AO=AM.AN

9 tháng 7 2020

A B C D E O H

Sau đây là cách của mình

Xét dây ED và tâm O của ( O ) có H là trung điểm của DE nên \(OH\perp DE\)

Khi đó tứ giác AHOC là tứ giác nội tiếp, tương tự ABHD cũng là tứ giác nội tiếp

Khi đó 5 điểm A,B,H,O,C đồng viên

Khi đó \(\widehat{AHB}=\widehat{AOB};\widehat{AHB}=\widehat{AOB}\)

Mà theo tính chất 2 tiếp tuyến cắt nhau ta có được \(OA\) là phân giác của \(\widehat{BOC}\) 

Hay \(\widehat{AOB}=\widehat{AOC}\Rightarrow\widehat{AHB}=\widehat{AHC}\Rightarrow HA\) là phân giác của ^BHC

Vậy ta có đpcm