cho n là số tự nhiên ; A=5.n+444...4 (n chữ số 4 ) CMR A chia hết cho9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Vì n+19/n+6 là 1 số tự nhiên
=> n+19 chia hết cho n+6 và được kết quả là 1 số tự nhiên
Ta có: n+19 chia hết cho n+6
=> (n+6)+13 chia hết cho n+6
Vì n+6 chia hết cho n+6 => 13 chia hết cho n+6
=> n+6 thuộc Ư(13)={1;13;-1;-13}
Mà vì n là số tự nhiên => n+6=13
=> n=7
A= (n+19)/(n+6)
=> A= (n+6+13)/(n+6)
=> A=1 + 13//(n+6)
để A là số tự nhiên thì (n+6) thuộc ước 13, mà n là số tự nhiên
=> n+6 thuộc tập hợp 1,13
=> n thuộc tập hợp 7
Vậy......
Ta có: n-2/(n+1)+8/(n+1)
=(n-2+8)/(n+1)
=n+6/(n+1)
=> n+1+5 chia hết cho n+1
=>5 chia hết cho n+1
=> n+1 /(in/) Ư(5)={-1;1;5;-5}
Mà n là số tự nhiên
=> n+1 /(in/) {1;5}
Ta có bảng sau:
n+1| 1 |5
n | 0 |4
VẬY n /(in/) {0;4}
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
mk cũng đang cần bài này các bn giúp mk và Trịnh Lan Phương với nha