K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

n la gi v a

19 tháng 7 2023

N là số tự nhiên 

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

24 tháng 3 2016

Vì n+19/n+6 là 1 số tự nhiên

=> n+19 chia hết cho n+6 và được kết quả là 1 số tự nhiên

Ta có: n+19 chia hết cho n+6

=> (n+6)+13 chia hết cho n+6

Vì n+6 chia hết cho n+6  => 13 chia hết cho n+6

=> n+6 thuộc Ư(13)={1;13;-1;-13}

Mà vì n là số tự nhiên => n+6=13

=> n=7

24 tháng 3 2016

A= (n+19)/(n+6)

=> A= (n+6+13)/(n+6)

=> A=1 + 13//(n+6)

để A là số tự nhiên thì (n+6) thuộc ước 13, mà n là số tự nhiên

=> n+6 thuộc tập hợp 1,13

=> n thuộc tập hợp 7

Vậy......

28 tháng 3 2022

Ta có: n-2/(n+1)+8/(n+1)

    =(n-2+8)/(n+1)

    =n+6/(n+1)

   => n+1+5 chia hết cho n+1

  =>5 chia hết cho n+1

=> n+1 /(in/) Ư(5)={-1;1;5;-5}

  Mà n là số tự nhiên

=> n+1 /(in/) {1;5}

Ta có bảng sau:

n+1|  1  |5

n    |   0  |4

VẬY n /(in/) {0;4}

28 tháng 3 2022

/(in/)=\(in\)= thuộc nha mik viết lộn á

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

12 tháng 3 2020

các bạn giải nhanh giúp mình với

mk cũng đang cần bài này các bn giúp mk và Trịnh Lan Phương với nha