Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm có phương trình là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án B.
Ta có O M → = ( 3 ; - 4 ; 7 )
Vecto chỉ phương của trục Oz là k → = ( 0 ; 0 ; 1 )
Mặt phẳng (P) đi qua điểm M(3;-4;7) có vecto pháp tuyến
Vậy phương trình mặt phẳng

mặt phẳng
α
chứa trục Oz nên phương trình có dạng
Lại có
α
đi qua điểm P(2;-3;5) nên
Vậy phương trình mặt phẳng α : 3x + 2y = 0
Chọn C.

Đáp án A
Gọi N(0;1;0) là điểm thuộc trục Oy ⇒ M N → = ( - 1 ; 0 ; 1 )
Gọi ⇒ u → = ( 0 ; 1 ; 0 ) là một véc tơ chỉ phương của đường thẳng Oy.
là một véc tơ pháp tuyến của (P)
Suy ra phương trình mp(P) là

Ta có: O M ⇀ ( 1 ; 1 ; - 1 ) ; j ⇀ ( 0 ; 1 ; 0 )
Mặt phẳng (P) chứa trục Oy và đi qua điểm M(1;1-1) có một VTPT là n ⇀ = O M ⇀ ; j ⇀ = 1 ; 0 ; 1
Phương trình (P) là: 1 ( x - 0 ) + 0 + 1 ( z - 0 ) = 0 ⇔ x + z = 0
Chọn đáp án D.

Đáp án A.
Ta có A M ⊥ B C ⊥ O A ⇒ B C ⊥ O A M ⇒ B C ⊥ O M
Tương tự ta cũng có O M ⊥ A C ⇒ O M ⊥ P ⇒ P (P) nhận O M ¯ = 3 ; 2 ; 1 là vecto pháp tuyến.
Trong các đáp án, chọn đáp án mặt phẳng có vecto pháp tuyến có cùng giá với O M ¯ và không chứa điểm M thì thỏa.
Mặt phẳng chứa trục Oz Þ mặt phẳng cần tìm có 1 VTCP là k → 0 ; 1 ; 1
⇒ k → ⊥ n → với n → là VTPT của mặt phẳng cần tìm.
Xét đáp án A: có n → 2 ; - 1 ; 0 ⇒ n → . k → = 2 . 0 + - 1 . 0 + 0 . 1 = 0
Thay tọa độ điểm I 1 ; 2 ; 3 vào phương trình ta được: 2 . 1 - 2 = 0 thỏa mãn
Chọn A.