K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

câu hỏi là gì thế?

a: Xét ΔABE và ΔADB co

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2=AE*AD

=>AH/AD=AE/AO

=>ΔAHE đồng dạng với ΔADO

=>góc AHE=góc ADO

=>góc OHE+góc ODE=180 độ

=>OHED nội tiếp

b: OHED nội tiếp

=>góc HED+góc HOD=180 độ

BD//AO

=>góc BDO+góc HOD=180 độ

=>góc BDO=góc HED

góc BCD+góc BDC=90 độ

góc BCD=góc BED
=>góc HED+góc BED=90 độ

=>HE vuông góc BF tại E

3 tháng 1 2017

F là trung điểm của đoạn thẳng MN F nằm giữa hai điểm MN, đồng thời MF = NF = 3cm.

5 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a) Xét (O) có

\(\widehat{EFC}\) là góc nội tiếp chắn cung EC

\(\widehat{ACE}\) là góc tạo bởi tiếp tuyến CA và dây cung CE

Do đó: \(\widehat{EFC}=\widehat{ACE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ACE}=\widehat{AFC}\)

Xét ΔACE và ΔAFC có 

\(\widehat{ACE}=\widehat{AFC}\)(cmt)

\(\widehat{EAC}\) chung

Do đó: ΔACE\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AC}{AF}=\dfrac{AE}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC^2=AE\cdot AF\)(Đpcm)

b) Xét ΔOEF có OE=OF(=R)

nên ΔOEF cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOEF cân tại O(Cmt)

mà OI là đường trung tuyến ứng với cạnh đáy EF(I là trung điểm của EF)

nên OI là đường cao ứng với cạnh EF(Định lí tam giác cân)

\(\Leftrightarrow OI\perp EF\)

Ta có: \(\widehat{OIA}=90^0\left(OI\perp EF\right)\)

nên I nằm trên đường tròn đường kính OA(1)

Ta có: \(\widehat{OBA}=90^0\left(gt\right)\)

nên B nằm trên đường tròn đường kính OA(2)

Ta có: \(\widehat{OCA}=90^0\left(gt\right)\)

nên C nằm trên đường tròn đường kính OA(3)

Từ (1), (2) và (3) suy ra A,B,O,I,C cùng nằm trên một đường tròn(đpcm)

8 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có : ∆ ABF nội tiếp trong (O) và AB là đường kính cuả (O) nên ΔABF vuông tại F

Suy ra: BF ⊥ AK

Mà AK ⊥ CD (gt)

Nên : BF // CD

Suy ra: ∠ BD = CF

(hai cung bị chắn giữa hai dây song song thì bằng nhau)

25 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó....
Đọc tiếp

M.Bài 6.Cho hai đường tròn (O; R) và (O; R) tiếp xúc ngoài nhau tại M. Hai đường tròn (O) và (O) cùng tiếp xúc trong với đường tròn lớn (O; R) lần lượt tại E và F. Tính bán kính Rbiết chu vi tam giác OOOlà 20cm.

Bài 7.Cho đường tròn (O; 9cm). Vẽ 6 đường tròn bằng nhau bán kính R đều tiếp xúc trong với (O) và mỗi đường tròn đều tiếp xúc với hai đường khác bên cạnh nó. Tính bán kính R.

Bài 8.Cho hai đường tròn đồng tâm. Trong đường tròn lớn vẽ hai dây bằng nhau AB = CD và cùng tiếp xúc với đường tròn nhỏ tại M và N sao cho AB CD tại I. Tính bán kính đường tròn nhỏ biết IA = 3cm, IB = 9cm.

Bài 9.Cho ba đường tròn O O O1 2 3( ),( ),( )cùng có bán kính R và tiếp xúc ngoài nhau từng đôi một. Tính diện tích tam giác có ba đỉnh là ba tiếp điểm.

Bài 10.Cho hai đường tròn (O) và (O) tiếp xúc nhau tại A. Qua A vẽ một cát tuyến cắt đường tròn (O) tại B và cắt đường tròn (O) tại C. Từ B vẽ tiếp tuyến xyvới đường tròn (O). Từ C vẽ đường thẳng uv song song với xy. Chứng minh rằng uvlà tiếp tuyến của đường tròn (O).

Bài 11.Cho hình vuông ABCD. Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, chúng cắt nhau tại một điểm thứ hai là E. Tia CE cắt AB tại M, tia BE cắt AD tại N. Chứng minh rằng:a) N là trung điểm của AD.b) M là trung điểm của AB.

Bài 12.Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Oxvà Oy. Vẽ đường tròn (I; OK) cắt tia Oxtại M (I nằm giữa O và M). Vẽ đường tròn (K; OI) cắt tia Oytại N (K nằm giữa O và N).

a) Chứng minh hai đường tròn (I) và (K) luôn cắt nhau.

b) Tiếp tuyến tại M của đường tròn (I) và tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông.

c) Gọi giao điểm của hai đường tròn (I), (K) là A và B. Chứng minh ba điểm A, B, C thẳng hàng.d) Giả sử I và K theo thứ tự di động trên các tia Oxvà Oysao cho OI + OK = a(không đổi). Chứng minh rằng đường thẳng AB luôn đi qua một điểm cố định.

0