cho tam giác ABC vuông tại C ; góc A = 60 độ tia phân giác góc BAC cắt BC tại E . Kẻ EK vuông góc với AB . Kẻ BD vuông góc với AE. Chứng minh rằng :
a) AC = AK; AE vuông góc với CK
b) KA=KB
c) EB > AC
d) 3 đường thẳng Ac;BD;AE đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
Ta có: ΔABD vuông cân tại B(gt)
nên \(\widehat{DAB}=45^0\)(Số đo của một góc nhọn trong ΔABD vuông cân tại B)
Ta có: ΔACE vuông cân tại C(gt)
nên \(\widehat{EAC}=45^0\)(Số đo của một góc nhọn trong ΔACE vuông cân tại C)
Ta có: ΔABC đều(gt)
nên AB=AC=BC và \(\widehat{BAC}=60^0\)(Số đo của các cạnh và các góc trong ΔABC đều)(1)
Ta có: \(\widehat{DAE}=\widehat{DAB}+\widehat{BAC}+\widehat{EAC}\)
\(\Leftrightarrow\widehat{DAE}=60^0+45^0+45^0=150^0\)
Ta có: ΔADB vuông cân tại B(gt)
nên AB=BD(hai cạnh bên)(2)
Ta có: ΔACE vuông cân tại C(gt)
nên AC=CE(hai cạnh bên)(3)
Từ (1), (2) và (3) suy ra AB=BC=AC=CE=DB
Xét ΔABD vuông tại B và ΔACE vuông tại C có
AB=AC(cmt)
DB=EC(cmt)
Do đó: ΔABD=ΔACE(hai cạnh góc vuông)
hay AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{DAE}}{2}\)(Số đo của các góc ở đáy trong ΔADE cân tại A)
hay \(\widehat{ADE}=15^0\) và \(\widehat{AED}=15^0\)
Vậy: Số đo các góc nhọn trong ΔADE là 150
a) xét hai tam giác vuông AEK và tam giác AKC
có : AE chung góc KAE = góc CAE ( AE phân giác góc BAC)
=> tam giác vuông AEK = tam giác AKC
=> AK=AC ( hai cạnh tương ứng bằng nahu )
gọi CK giao với AE tại H
ta xét tam giác AHK và tam giác AHC có
góc KAE = góc CAE ( AE phân giác góc BAC)
AH chung
AK=AC
=> tam giác AHK = tam giác AHC
=> góc AHK = góc AHC mà góc AHK +góc AHC=180
=> góc AHK = góc AHC=90
=> AE_|_CK
b) xét tam giác vuông CHA có : A+H+C=180
=>góc HCA=180-90-30=60
mà góc ACK=60
=> tam giác ACK cân tại K
=> CK = KA
tương tự ta cs : CK=HB
=> KA=KB (=CK)
A O B C E D K 1 2 a. xét tam giác ACE và tam giác AKE có :
AE chung
góc C= góc K ( =90 độ)
A1=A2( gt)
=> tam giác ACE=tam giác AKE ( g.c.g)
=> AC=AK ( 2 cạnh tương ứng )
vì AC=AK => tam giác ACK cân tại a
trong 1 tam giác cân dq phân giác đồng thời là đường cao=> AE vuông góc với AK
b. vì AE là phân giác góc BAC
=> A1=A2=góc BAC:2=600 : 2= 300 (1)
Xét tam giác ABC có :
BAC+ABC+ACB=1800
600+900+ABC=1800
=> ABC=1800-900-600=300 (2)
Từ (1) và (2) => A1=ABC
xét tam giác ACE và tam giác BKE có :
ACE=BKE (=900)
A1=ABC( CMT)
EC=EK ( theo a)
=> tam giác ACE= tam giác BKE ( g.c.g)
=> AC=KB ( 2 cạnh tương ứng)
mà AC=AK ( theo a)
=> KB=KA (đpcm)
c. vì A2=ABC ( theo b cùng =300)
=> tam giác EAB cân tại E => AE=EB (1)
xét tam giác vuông ACE
vì AE là cạnh huyền => AE>AC(2)
từ (1) và (2 ) => EB>AC (đpcm)
d. gọi O là giao điểm của AC và BD
xét tam giác AOB có 3 dq cao lần lượt là AD,OK,BC
=> AD , OK ,BC giao nhau tại O => O,K,E thẳng hàng => AC,BD,KE đồng quy tại O ( đpcm )