Bài 1 : Cho hàm số y = 3(2mx - 1) + m + 2 (d)a. Vẽ đồ thị hàm số với m = \(\dfrac{1}{2}\)b. Tìm m để hàm số nghịch biến trên tập xác định.c. Tìm m để (d) vuông góc với đường thẳng (△) : y = 6x + 1d. Tìm điểm cố định luôn nằm trên đường thẳng (d).e. Tìm khoảng cách lớn nhất từ gốc tọa độ O đên (d). Bài 2 : Cho hàm số y = 3m - m - 1 (d)a. Vẽ đồ thị hàm số với m = -1.b. Tìm m để hàm...
Đọc tiếp
Bài 1 : Cho hàm số y = 3(2mx - 1) + m + 2 (d)
a. Vẽ đồ thị hàm số với m = \(\dfrac{1}{2}\)
b. Tìm m để hàm số nghịch biến trên tập xác định.
c. Tìm m để (d) vuông góc với đường thẳng (△) : y = 6x + 1
d. Tìm điểm cố định luôn nằm trên đường thẳng (d).
e. Tìm khoảng cách lớn nhất từ gốc tọa độ O đên (d).
Bài 2 : Cho hàm số y = 3m - m - 1 (d)
a. Vẽ đồ thị hàm số với m = -1.
b. Tìm m để hàm số vuông góc với đường thẳng (△) : y = x + 1.
c. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là 2.
d. Tìm điểm cố định luôn nằm trên (d).
e. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất.
Bài 3 : Cho hàm số y = (4m - 3)x + m + 3
a. Vẽ đồ thị hàm số với m = 1.
b. Tìm m để hàm số nghịch biên trên tập xác đinh.
c. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là -4.
d. Tìm điểm cố định luôn nằm trên (d).
e. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất.
1.
a, Lấy \(x_1;x_2\in\left(1;+\infty\right)\left(x_1\ne x_2\right)\)
\(\Rightarrow y_1-y_2=x_1^2-x^2_2+2mx_1-2mx_2=\left(x_1-x_2\right)\left(x_1+x_2+2m\right)\)
\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=x_1+x_2+2m\)
Hàm số đồng biến trên \(\left(1;+\infty\right)\) khi \(I>0\Leftrightarrow x_1+x_2+2m>0\)
Do \(x_1;x_2\in\left(1;+\infty\right)\Rightarrow x_1+x_2>2\Rightarrow2m\ge-2\Leftrightarrow m\ge-1\)
b, Lấy \(x_1;x_2\in\left(2;+\infty\right)\left(x_1\ne x_2\right)\)
\(\Rightarrow y_1-y_2=-x_1^2+x^2_2-4mx_1+4mx_2=\left(x_1-x_2\right)\left(-x_1-x_2-4m\right)\)
\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-x_1-x_2-4m\)
Hàm số nghịch biến trên \(\left(2;+\infty\right)\) khi \(I< 0\Leftrightarrow-x_1-x_2-4m< 0\)
Do \(x_1;x_2\in\left(2;+\infty\right)\Rightarrow-x_1-x_2< 4\Rightarrow-4m\le-4\Leftrightarrow m\ge1\)
2.
a, \(f\left(0\right)=m-5;f\left(3\right)=m-8;f\left(1\right)=m-4\)
\(Minf\left(x\right)=\left\{f\left(0\right);f\left(3\right);f\left(1\right)\right\}=m-8=4\)
\(\Rightarrow m=12\)