K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

Áp dụng AM - GM . Ta có :

\(2x\sqrt{9y\left(x+8y\right)}\le x\left(9y+x+8y\right)=x^2+17xy\)

\(\le x^2+\dfrac{17}{2}\left(x^2+y^2\right)\)

Tự làm tiếp

7 tháng 5 2019

Theo Cô-si:

\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\ge\frac{2\sqrt{xy}}{xy}=\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

Dấu = khi x=y

23 tháng 12 2019

max=1/3. ra đc rồi ạ

11 tháng 8 2018

a) \(x^2y>0\) . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2 dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |\(x^2y>0\)

b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y

Suy ra -x + y =

c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.

d)tương tự như các bài trên

e) tương tự các bài trên. Mình lười làm òi!

14 tháng 11 2018

a) x2y>0x2y>0 . Đúng, bởi vì theo đề ta có x < 0 hay x âm. Nhưng với số mũ y chẵn (2,4,6,...) thì khi đó xy (theo đề bài ở đây là x2) thì x2dương hay x2 > 0 do vậy kết hợp với y > 0 ta có |x2y>0x2y>0

b) x + y = 0 . Đúng do |x| = |y| nên kết hợp với đề bài ta có:|-x|=y

Suy ra -x + y =

c) xy < 0 (hay xy âm) đúng vì x,y trái dấu. Theo quy tắc ta có trái dấu thì âm, đồng dấu thì dương.

8 tháng 10 2020

Câu 1 mình ấn nhầm

giúp mình câu 2 thôi. Thank you

25 tháng 6 2018

Giải:

a) \(x^2+xy+y^2+1\)

\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)

Vậy ...

26 tháng 6 2018

Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi

1.BĐT Cauchy

\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)

\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )

2.BĐT Bunhiacopxki

\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)

3.BĐT Mincopxki

\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)

4.BĐT Chebyshev

Với A>B, x>y thì

\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)

Vs 3 sô thì bên vế phải thay 2 bằng 3

5.BĐT Benuli

\(\left(1+h\right)^n\ge1+nh\)

6.BĐT Holder

Với a,b,c,x,y,z,m,n,p là sô thực dương

\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

7.BĐT Sơ-vác-sơ

\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)

8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)

12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)

14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )

15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)

16. \(a^2+b^2+c^2\ge ab+ac+bc\)

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z