K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

Ta có : \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}\)

\(=\frac{\frac{\left(\sqrt{a}-\sqrt{b}\right)^3\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}+2a\sqrt{a}-b\sqrt{b}}{\sqrt{a}^3-\sqrt{b}^3}+\frac{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{-\left(a-b\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^3+2a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{-\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{a\sqrt{a}+3a\sqrt{b}+3b\sqrt{a}+b\sqrt{b}+2a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{3a\sqrt{b}+3\sqrt{a}b+3a\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{3\sqrt{a}\left(\sqrt{ab}+b+a\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=-\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}=0\)

Vậy ...

5 tháng 5 2019

Đáp án D

Đặt log 25 x 2 = log 15 y = log 9 x + y 4 = t ⇒ x 2 = 25 t y = 15 t x + y = 4 . 9 t  

⇒ 2 . 15 t + 15 t = 4 . 9 t x y = 2 5 3 t ⇒ 2 . 5 3 2 t + 5 3 t - 4 = 0 ⇔ [ 5 3 t = - 1 + 33 4 5 3 t = - 1 - 33 4

⇒ 5 3 t = - 1 + 33 4 ⇒ x y = - 1 + 33 4 ⇒ a = - 1 b = 33 ⇒ a + b = 32 .

30 tháng 8 2017

Đáp án là D

26 tháng 6 2019

Chọn D.

11 tháng 7 2018

Đáp án D

Đặt

7 tháng 9 2019

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

27 tháng 2 2018

Chọn đáp án B