K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

a) Nối A và D lại, ta đc: ΔABD & ΔADC

Ta có: D là trung điểm BC => BD=DC

Xét ΔABD & ΔADC có:

AB=AC(gt) ; BD=DC ; AD=AD

=> ΔADB = ΔADC

17 tháng 12 2021

1a. Xét △ABD và △ACD có:

\(AB=BC\left(gt\right)\)

\(\hat{BAD}=\hat{CAD}\left(gt\right)\)

\(AD\) chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).

 

2a. Xét △ABD và △EBD có:

\(AB=BE\left(gt\right)\)

\(\hat{ABD}=\hat{EBD}\left(gt\right)\)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
 

c/ Xét △ABI và △EBI có:

\(AB=BE\left(gt\right)\)

\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)

\(BI\) chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)

\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)

Vậy: \(BD\perp AE\)

a) Xét ΔABD vuông tại A và ΔFBD vuông tại F có

BD là cạnh chung

BA=BF(gt)

Do đó: ΔABD=ΔFBD(cạnh huyền-cạnh góc vuông)

b) Xét ΔAED vuông tại A và ΔFCD vuông tại F có

DA=DF(ΔABD=ΔFBD)

\(\widehat{ADE}=\widehat{FDC}\)(hai góc đối đỉnh)

Do đó: ΔAED=ΔFCD(cạnh góc vuông-góc nhọn kề)

⇒AE=FC(hai cạnh tương ứng)

Ta có: AE+AB=EB(A nằm giữa E và B)

FC+FB=BC(F nằm giữa B và C)

mà AE=FC(cmt)

và AB=FB(gt)

nên EB=BC

Xét ΔABC vuông tại A và ΔFEB vuông tại F có

BC=EB(cmt)

BA=BF(gt)

Do đó: ΔABC=ΔFEB(cạnh huyền-cạnh góc vuông)

Thanks, cảm ơn bạn nhiều nha!!!!

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

7 tháng 5 2019

Ôn tập Tam giác

a) C/m AH là đường trung tuyến

Có 2 cách để làm:

- Cách 1:

Xét ΔvABH và ΔvACH có:

AB = AC ( ΔABC cân)

\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân)

Do đó: ΔvABH = ΔvACH (ch-gn)

=> BH = CH (cạnh tương ứng)

Vậy AH là đường trung tuyến của ΔABC

- Cách 2:

Ta có: AH ⊥ BC (gt)

=> AH là đường cao của ΔABC

Mà: ΔABC cân

=> AH cũng là đường trung tuyến của ΔABC

b) So sánh AC và AD

Ta có:

HC là hình chiếu của AC

HD là hình chiếu của AD

Mà: HC > HD (C nằm giữa HD)

Vậy AC < AD

c) Hơi khó :v

5 tháng 2 2020

a)Xét đồng dạng ms đc, bằng nhua cái kiểu j

Xét ABM và ACN có góc A chung góc N=M=90

5 tháng 2 2020

b/Từ 2 tam giác đồng dạng bằng nhau ở a➩AN/AC=AM/AB,Lại có góc A chung nên suy ra AMN đồng dạng ABC

17 tháng 12 2017

A B C D

a, Xét \(\Delta ADB;\Delta ADC\) có :

\(\left\{{}\begin{matrix}AB=AC\\DB=DC\\ADchung\end{matrix}\right.\)

\(\Leftrightarrow\Delta ADB=\Delta ADC\left(c-c-c\right)\)

b, \(\Delta ADB=\Delta ADC\left(cmt\right)\)

\(\Leftrightarrow\widehat{BDA}=\widehat{ADC}\)

Lại có :

\(\widehat{BDA}+\widehat{ADC}=180^0\left(kềbuf\right)\)

\(\Leftrightarrow\widehat{BDA}+\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AD\perp BC\)