Tìm giá trị \(3a-b+c\) biết
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\) và \(a+b+c=21\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mik dùng cácg rút nha!! ta rút b
=> Có biểu thức (2 x b : 3) + b + (5 x b : 4) = 21
nhấn máy tính CASIO => b =7,2
a = (2 x b :3) = (2 x 7,2 :3) =4,8
c= (5 x b :4) = (5 x 7,2 :4)=9
=> 3a-b+c=3 x 4,8 - 7,2 + 9=16,2
Bn k cho mik nha!!!
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
a) Ta có: \(3a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\) (1)
Và \(4b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\) (2)
Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)
\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)
a) \(\hept{\begin{cases}3a=2b\\4b=5c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\Rightarrow}\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
-a - b + c = -52 => -( a + b - c ) = -52
=> a + b - c = 52
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{52}{13}=4\)
\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)
b) \(C=\frac{2x^2-5x+3}{2x-1}\)( ĐKXĐ : \(x\ne\frac{1}{2}\))
\(\left|x\right|=\frac{3}{2}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{2}\end{cases}}\)
Với x = 3/2 ( tmđk )
=> C = \(\frac{2\cdot\left(\frac{3}{2}\right)^2-5\cdot\frac{3}{2}+3}{2\cdot\frac{3}{2}-1}=\frac{0}{2}=0\)
Với x = -3/2 ( tmđk )
=> C = \(\frac{2\cdot\left(-\frac{3}{2}\right)^2-5\cdot\left(-\frac{3}{2}\right)+3}{2\cdot\left(-\frac{3}{2}\right)-1}=\frac{15}{-4}=-\frac{15}{4}\)
a) \(\frac{2a^2-3a-2}{a^2-4}=2\)
\(\Rightarrow2a^2-3a-2=2\left(a^2-4\right)\)
\(\Rightarrow2a^2-3a-2=2a^2-4\)
\(\Rightarrow-3a-2=-4\)
\(\Rightarrow-3a=-2\Rightarrow a=\frac{2}{3}\)
b) \(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)
\(\Rightarrow\frac{\left(3a-1\right)\left(a+3\right)+\left(3a+1\right)\left(a-3\right)}{\left(3a+1\right)\left(a+3\right)}=2\)
\(\Rightarrow\frac{6a^2-6}{3a^2+10a+3}=2\)
\(\Rightarrow6a^2-6=2\left(3a^2+10a+3\right)\)
\(\Rightarrow6a^2-6=6a^2+20a+6\)
\(\Rightarrow-6=20a+6\Rightarrow20a=-12\)
\(\Rightarrow a=\frac{-3}{5}\)
Áp dụng BĐT Bunhiacopxky :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)
\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)
\(P\le\frac{2}{3}+ab+bc+ac\)
Theo hệ quả quen thuộc của BĐT AM - GM :
\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)
Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)
Ta có: \(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{35}=\frac{3}{5}\)
\(a=\frac{3}{5}.8=\frac{24}{5}\)
\(b=\frac{3}{5}.12=\frac{36}{5}\)
\(c=\frac{3}{5}.15=9\)
\(\Rightarrow3a-b+c=3.\frac{24}{5}-\frac{36}{5}+9=\frac{81}{5}\)
Vậy 3a - b + c = 81/5
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\)
=> \(\frac{a}{8}=\frac{b}{12};\frac{b}{12}=\frac{c}{15}\)
=>\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)và a + b + c =21
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b+c}{8+12+15}=\frac{21}{35}=\frac{3}{5}\)
=> a = \(\frac{24}{5}\)
b = \(\frac{36}{5}\)
c = 9
=> 3a - b + c = 16 , 2
Vậy 3a - b + c = 16 , 2