Cho\(\Delta ABC=DEF\). Tính số đo các góc của tam giác ABC biết rằng: Â=\(\frac{1}{2}Ê;\frac{1}{2}B=\frac{1}{3}F\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta co goc con lai la C
Tong cac ta giax ABC la 180 do
=> A+B+C=180
=>55+75+C=180
=>75+C=180-55
=> 75+C=125
=>C = 125-75
=> C =50
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a=2b=3c
=>a/6=b/3=c/2
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{6}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b+c}{6+3+2}=\dfrac{180}{11}\)
=>a=1080/11; b=540/11; c=360/11
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E F 5 7 8 12 45 55
Giải
Vì\(\Delta ABC~\Delta DEF\) nên ta có:
\(\widehat{D}=\widehat{A}=45^o\)
\(\widehat{E}=\widehat{B}=55^o\)
\(\widehat{F}=\widehat{C}=\left(180^o-45^o-55^o\right)=80^o\)
Xét\(\Delta ABC~\Delta DEF\) có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{AB.3}{2}=7,5\)
\(DF=\frac{AC.3}{2}=10,5\)
#hoktot<3#
![](https://rs.olm.vn/images/avt/0.png?1311)
Tổng ba góc của một tam giác là 180
vậy góc A=180*2/5 =72 biết \(\frac{1}{2}\)A là 1,E là 2
sau khi biết góc A thì tính góc E; E=180-72=108
Cứ tương tự mà bạn làm tiếp nhé giờ mình phải đi học rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(\Delta ABC = \Delta DEF\) nên \(\widehat B = \widehat E = {80^o}\); \(\widehat D = \widehat A = {60^o}\); \(\widehat C = \widehat F\) ( các góc tương ứng)
Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 60^\circ + 80^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ - 60^\circ - 80^\circ = 40^\circ \end{array}\)
Do đó \(\widehat F = 40^\circ \)
Vậy \(\widehat B = {80^o}; \widehat D ={60^o}; \widehat C = \widehat F= 40^\circ \).
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi các góc của \(\Delta ABC\) là :a,b,c
a, Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4};a+b+c=180^o\)
Áp dụng t/c dtsbn , ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180^o}{9}=20^o\)
\(\Rightarrow\left\{{}\begin{matrix}a=40^o\\b=60^o\\c=80^o\end{matrix}\right.\)
\(\Rightarrow\)Số đo các góc của \(\Delta ABC:....\)
b,Ta có : \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3};a+b+c=180^o\)
Áp dụng t/c dtsbn , ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180^o}{6}=30^o\)
\(\Rightarrow\left\{{}\begin{matrix}a=30^o\\b=60^o\\c=90^o\end{matrix}\right.\)
\(\Rightarrow\)Số đo các góc của \(\Delta ABC\):...
Gọi số đo ba góc của tg lần lượt là: \(a,b,c\left(a,b,c>0\right)\)
Áp dụng t/c dtsbn:
a. \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180^0}{9}=20\)
\(\Rightarrow\left\{{}\begin{matrix}a=40^0\\b=60^0\\c=80^0\end{matrix}\right.\)
câu b lm tương tự nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
cả 2 phần cậu đều áp dụng tính chất dãy tỉ số bằng nhau đi
dễ mà
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)