\(Cho\)\(a,b\)> \(0\)\(;\)\(a+b=1\)
\(Hãy\)\(cmr\): \(\left(1+\frac{1}{a}\right).\left(1+\frac{1}{b}\right)\ge\)\(9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.
+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)2 + bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.
+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.
Vậy: a,b,c > 0
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhua nên chọn a>0
TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)
\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
a. \(a+\frac{1}{a}\ge2\Leftrightarrow\frac{a^2+1}{a}\ge2\Leftrightarrow a^2+1\ge2a\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\)(luôn đúng)
Vậy...
b, \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\)
\(\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy...
Cách khác
a)Áp dụng BĐT Cô si cho 2 số dương ta có đpcm: \(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)
Đẳng thức xảy ra khi a = 1.
b) Áp dụng bđt Bunhiacopxki \(2\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\left(\sqrt{a}+b\right)^2\)
Suy ra \(\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}\). Thay vào và rút gọn ta có đpcm:
\(VT\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}=\left|\frac{\sqrt{a}+\sqrt{b}}{2}\right|=\frac{\sqrt{a}+\sqrt{b}}{2}=VP^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b
\(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)
\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\ge\dfrac{2\sqrt{bc}}{a}.\dfrac{2\sqrt{ac}}{b}.\dfrac{2\sqrt{ab}}{c}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)
\(\Leftrightarrow\frac{1+a}{a}.\frac{1+b}{b}\ge9\)
\(\Leftrightarrow1+a+b+ab-9ab\ge0\)
\(\Leftrightarrow2-8ab\ge0\)
Thế a = 1 - b vào ta được
\(\Leftrightarrow2-8b\left(1-b\right)\ge0\)
\(\Leftrightarrow4b^2-4b+1\ge0\)
\(\Leftrightarrow\left(2b-1\right)^2\ge0\)(đúng)
=> ĐPCM