K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

\(\dfrac{x}{5}=\dfrac{y}{3};\dfrac{y}{2}=\dfrac{z}{7}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{6};\dfrac{y}{6}=\dfrac{z}{21}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\)

\(\Rightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)

\(=\dfrac{5x+y-2z}{50+6-42}\)

\(=\dfrac{28}{14}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.6=12\\z=2.21=42\end{matrix}\right.\)

1 tháng 8 2017

Có phải đề sai ko??!!

1: Ta có: \(\dfrac{x}{3}=\dfrac{y}{6}\)

mà 4x-y=42

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{4x-y}{4\cdot3-6}=\dfrac{42}{12-6}=\dfrac{42}{6}=7\)

=>\(x=7\cdot3=21;y=6\cdot7=42\)

2: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x-2y+3z=33

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{2-6+15}=\dfrac{33}{11}=3\)

=>\(x=3\cdot2=6;y=3\cdot3=9;z=3\cdot5=15\)

3: \(\dfrac{x}{y}=\dfrac{6}{5}\)

=>\(\dfrac{x}{6}=\dfrac{y}{5}\)

mà x+y=121

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)

=>\(x=11\cdot6=66;y=11\cdot5=55\)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

28 tháng 8 2023

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)

b) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)

28 tháng 8 2023

Đính chính

Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó: x=16; y=24; z=30

6 tháng 11 2021

C

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

Bài 1:

x/-3=9/4

nên x=-9/4*3=-27/4

2x+y=-4

=>y=-4-2x=-4-2*(-27/4)=-4+27/2=27/2-8/2=19/2

11 tháng 10 2023

b:

ĐKXĐ: x<>0

 \(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)

=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)

=>\(6\left(6+xy\right)=3x\)

=>\(x=2\left(6+xy\right)=12+2xy\)

=>\(x\left(1-2y\right)=12\)

mà x,y là các số nguyên

nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)

c: ĐKXĐ: y<>-1

\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)

=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)

=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)

=>\(2xy+2x+6=y+1\)

=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)

=>\(\left(2x-1\right)\left(y+1\right)=-6\)

mà x,y là các số nguyên

nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)