Tính giá trị biểu thức: a) A= |-101|+|21|+|-99|-|25|. b) B= ||17-42|-64|. c) C= |2^7-7^2|+|3^3-3^4|+|10^3-3^5|. d) D= |1/3 - 2/3| + |5/6 + -7/12|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tại sao các ca sĩ thường đến phòng thu âm chuyên dụng để thu bài hát chứ không thu tại nhà hát hay sân khấu?
\(x\) = y.\(\dfrac{3}{4}\) ; z = \(\dfrac{y}{5}\).7
Thay \(x\) = y.\(\dfrac{3}{4}\) và z = \(\dfrac{y}{5}\).7 vào biểu thức:
2\(x\) + 3y - z = 186 ta có:
2.y.\(\dfrac{3}{4}\) + 3y - \(\dfrac{y}{5}\).7 = 186
y.(2.\(\dfrac{3}{4}\) + 3 - \(\dfrac{7}{5}\)) = 186
y.\(\dfrac{31}{10}\) = 186
y = 186 : \(\dfrac{31}{10}\)
y = 60 ; \(x\) = 60. \(\dfrac{3}{4}\) = 45; z = 60.\(\dfrac{7}{5}\) = 84
\(x\) + y + z = 45 + 60 + 84 = 189
Mình không hiểu câu sau của đề bài.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó:
\(\dfrac{x}{15}=3\Rightarrow x=15.3=45\)
\(\dfrac{y}{20}=3\Rightarrow y=20.3=60\)
\(\dfrac{z}{28}=3\Rightarrow z=28.3=84\)
Tổng là: \(x+y+z=45+60+84=189\)
Vậy....
Lời giải:
$\frac{7x+5y}{3x-5y}=\frac{7z+5t}{3z-5t}$
$\Rightarrow (7x+5y)(3z-5t)=(7z+5t)(3x-5y)$
$\Rightarrow 21xz-35xt+15yz-25yt = 21xz-35yz+15xt-25yt$
$\Rightarrow -35xt+15yz=-35yz+15xt$
$\Rightarrow -50xt=-50yz$
$\Rightarrow xt=yz\Rightarrow \frac{x}{y}=\frac{z}{t}$
\(C=A-B=x^2-5xy+5y^2-3x+18y-\left(-x^2+3xy-y^2-x-7\right)\\ =x^2-5xy+5y^2-3x+18y+x^2-3xy+y^2+x+7\\ =\left(x^2+x^2\right)+\left(-5xy-3xy\right)+\left(5y^2+y^2\right)+\left(-3x+x\right)+18y+7\)
\(=2x^2-8xy+6y^2-2x+18y+7\)
Bạn xem lại đề nhé, mình nghĩ không tính được giá trị C khi x-y=4 nhé.
-3/4 . -8/9 . ... . -4084440/4084440
= 3/4 . 8/9 . 4084440/4084441
=1.3/2.2 . 2.4/3.3 ... 2020.2022/2021.2021
=1.3.2.4...2020.2022/2.2.3.3...2021.2021
=(1.2...2020)(3.4...2022)/(2.3...2021)(2.3...2021)
=1.2022/2021.2=2022/4042
a) Xét hai tam giác vuông: ∆AHC và ∆MHC có:
HC là cạnh ccung
AH = MH (gt)
⇒ ∆AHC = ∆MHC (hai cạnh góc vuông)
b) Do ∆AHC = ∆MHC (cmt)
⇒ ∠ACH = ∠MCH (hai góc tương ứng)
AC = MC (hai cạnh tương ứng)
Do ∠ACH = ∠MCH (cmt)
⇒ ∠ACB = ∠MCB
Xét ∆ABC và ∆MBC có:
AC = MC (cmt)
∠ACB = ∠MCB (cmt)
BC là cạnh chung
⇒ ∆ABC = ∆MBC (c-g-c)
a) Do AI là tia phân giác của BAC (gt)
⇒ ∠BAI = ∠CAI
⇒ ∠BAI = ∠DAI
Xét ∆BAI và ∆DAI có:
AB = AD (gt)
∠BAI = ∠DAI (cmt)
AI là cạnh chung
⇒ ∆BAI = ∆DAI (c-g-c)
⇒ BI = ID (hai cạnh tương ứng)
b) Do ∆BAI = ∆DAI (cmt)
⇒ ∠ABI = ∠ADI (hai góc tương ứng)
Mà ∠ABI + ∠EBI = 180⁰ (kề bù)
∠ADI + ∠CDI = 180⁰ (kề bù)
⇒ ∠EBI = ∠CDI
Xét ∆IBE và ∆IDC có:
∠EBI = ∠CDI (cmt)
BI = ID (cmt)
∠BIE = ∠DIC (đối đỉnh)
⇒ ∆IBE = ∆IDC (g-c-g)
c) Do ∆IBE = ∆IDC (cmt)
⇒ BE = DC (hai cạnh tương ứng)
Mà AB = AD (gt)
⇒ AE = AB + BE = AD + DC = AC
∆AEC có:
AE = AC (cmt)
⇒ ∆AEC cân tại A
⇒ ∠AEC = (180⁰ - ∠EAC) : 2 (1)
∆ABD có:
AB = AD (gt)
⇒ ∆ABD cân tại A
⇒ ∠ABD = (180⁰ - ∠BAD) : 2 = (180⁰ - ∠EAC) : 2 (2)
Từ (1) và (2) ⇒ ∠AEC = ∠ABD
Mà ∠AEC và ∠ABD là hai góc đồng vị
⇒ BD // EC
a; A = |-101| + |21| + |-99| - |25|
A = 101 + 21 + 99 - 25
A = (101 + 99) - (25 - 21)
A = 200 - 4
A = 196
b; B = ||17 - 42| - 64|
B = ||-25| - 64|
B = |25 - 64|
B = |-39|
B = 39
c, C = |27 - 72| + |33 - 34| + |103 - 35|
C = |128 - 49| + |27 - 81| + |1000 - 243|
C = |79| + |-54| + | 757|
C = 79 + 54 + 757
C = 133 + 757
C = 890