K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2024

Gọi x( x ≥ 0 )  là số kg loại I cần sản xuất,y ( y ≥ 0 ) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x+ 4y, thời gian là 30x+ 15y có mức lời là 40.000x+ 30.000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 120 giờ làm việc suy ra

2x+ 4y ≤ 200 hay x+ 2y- 100  0 ; 30x+ 15y  1200 hay 2x+ y-80  0

Tìm x; y thoả mãn hệ 

sao cho L( x; y) = 40.000x+ 30.000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng ( d) : x+ 2y-100= 0 và ( d’) : 2x+y-80=0

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) =1.600.000;

L(0; 50) = 1.500.000; L(20; 40) =  2.000.000

suy ra giá trị lớn nhất của L(x; y)  là 2.000.000 khi (x; y) =(20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

NV
3 tháng 3 2022

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=\dfrac{5^2+8^2-7^2}{2.5.8}=\dfrac{1}{2}\)

\(\Rightarrow A=60^0\)

27 tháng 6 2023

a) Trong mặt phẳng tọa độ, vẽ đường thẳng (�)(d)2�−�=02xy=0.

Ta có (�)(d) chia mặt phẳng thành hai nửa mặt phẳng.

Chọn một điểm bất kì không thuộc đường thẳng đó, ví dụ điểm �(1;0)M(1;0). Ta thấy (1;0)(1;0) là nghiệm của bất phương trình đã cho.

Vậy miền nghiệm cần tìm là nửa mặt phẳng chứa bờ (�)(d) và chứa điểm �(1;0)M(1;0) (Miền không được tô màu ở hình vẽ sau).

y x 1 2 O

b) Ta có �−2�2>2�+�+13⇔3(�−2�)−2(2�−�+1)>0⇔−�−4�−2>0⇔�+4�+2<02x2y>32x+y+13(x2y)2(2xy+1)>0x4y2>0x+4y+2<0

Trong mặt phẳng tọa độ, vẽ đường thẳng ΔΔ�+4�+2=0x+4y+2=0.

Xét điểm �(0;0)O(0;0), thấy (0;0)(0;0) không phải là nghiệm của bất phương trình đã cho do đó miền nghiệm cần tìm là nửa mặt phẳng bờ ΔΔ (không kể đường thẳng ΔΔ) và không chứa điểm �(0;0)O(0;0) (Miền không được tô màu ở hình vẽ sau).

y x 1 − 2 O 1 1 2 −

NV
1 tháng 3 2022

\(\left(1+a^2b^2\right)\left(\dfrac{4}{a^2}+\dfrac{3}{b^2}\right)\ge2\sqrt{a^2b^2}.2\sqrt{\dfrac{12}{a^2b^2}}=8\sqrt{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left(a^2;b^2\right)=\left(\dfrac{2}{\sqrt{3}};\dfrac{\sqrt{3}}{2}\right)\) 

NV
1 tháng 3 2022

\(p=\dfrac{a+b+c}{2}=15\)

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{15\left(15-8\right)\left(15-10\right)\left(15-12\right)}=15\sqrt{7}\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{10^2+12^2-8^2}{2.10.12}=\dfrac{3}{4}\Rightarrow A\approx41^024'\)