Hình thoi ABCD có AB = 8cm, ÂDC = 1200 . Từ B kẻ BE ⊥ AD (E thuộc AD) , BF ⊥ DC (F thuộc CD) a) Tính các góc của hình thoi. b) Tính độ dài AE,DF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, b là 2 số tự nhiên liên tiếp nên b=a+1. Thay vào p ta có:
p = a2+(a+1)2+a2*(a+1)2
p= a2+a2+2a+1+a2(a2+2a+1)
p=a4+ 2a3+3a2+2a+1
p=(a4+2a3+a) +2 (a2+a) +1
p=(a2+a)2+2 (a2+a) +1
p=[(a2+a) + 1]2
Vậy p là số chính phương.
Nếu a lẻ thì (a2+a) chẵn => p lẻ
Nếu a chẵn thì (a2+a) chẵn => p lẻ
Vậy p là số chính phương lẻ.
a) \(\left(4x-1\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(4x-1+x+2\right)\left(4x-1-x-2\right)=0\)
\(\Leftrightarrow\left(5x+1\right)\left(3x-3\right)=0\)
\(\Leftrightarrow3\left(5x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=1\end{cases}}\)
b) \(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow x^2+x-8x-8=0\)
\(\Leftrightarrow x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=8\end{cases}}\)
c) \(\left(5x-7\right)^2-25=0\Leftrightarrow\left(5x-7-5\right)\left(5x-7+5\right)=0\)
\(\Leftrightarrow\left(5x-12\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-12=0\\5x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{12}{5}\\x=\frac{2}{5}\end{cases}}\)
Xét \(\Delta ABC\)có E và F lần lượt là trung điểm của AB, BC (gt)
\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)(tính chất đường trung bình trong tam giác)
Chứng minh tương tự, ta cũng có \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)
Từ đó dễ thấy \(\hept{\begin{cases}EF//GH\left(//AC\right)\\EF=GH\left(=\frac{1}{2}AC\right)\end{cases}}\)
Xét tứ giác EFGH có EF//GH (cmt) và EF = GH (cmt) \(\Rightarrow\)Tứ giác EFGH là hình bình hành (dấu hiệu nhận biết)
\(5x^3-40=5\left(x^3-8\right)=5\left(x^3-2^3\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)